Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soil fertility in the tropics can be influenced by landscape and precipitation

20.07.2005


A new study conducted in the Hawaiian Islands has revealed that landscape and erosion play crucial roles in determining soil fertility in tropical ecosystems.



"This study is the first to accurately predict the distribution of nutrients across a complex tropical forest landscape, and then to detect these shifts in nutrient status using airborne sensors," says Stanford University graduate student Stephen Porder, lead author of the study, which will be published in this week’s online edition of the Proceedings of the National Academy of Sciences (PNAS).

Porder’s co-authors are Carnegie Institution scientist Gregory P. Asner, an assistant professor (by courtesy) of geological and environmental sciences at Stanford; and Peter M. Vitousek, the Clifford G. Morrison Professor in Population and Resource Studies at Stanford. "Tropical soils often are assumed to be highly weathered and thus nutrient depleted," the authors write. But the study, which focused on the island of Kauai, revealed a complex "biogeochemical patchwork with almost equal areas of high and low nutrient availability."


Phosphorous, calcium and other minerals essential for plant growth are derived from the breakdown of bedrock as it is converted to soil. "As soil ages, this bedrock source is thought to be depleted, and these elements become increasingly scarce," Porder explains. "However, this process has been studied almost exclusively on uneroded surfaces, and thus it is uncertain how well it applies to actively-eroding landscapes."

In previous studies, Porder, Vitousek and their colleagues discovered that the erosion of mineral-rich rocks actually rejuvenated soils along several slopes in Hawaii, producing higher phosphorous concentrations.

The PNAS study was designed to determine the extent of nutrient rejuvenation in old Hawaiian forests. To find out, the researchers focused on a 7.7-square-mile area of Kauai that includes stable ridgetops, eroding slopes and valleys that receive very different amounts of annual rainfall.

The researchers first collected soil samples and leaves from native ohia trees along a series of transects running from hilltops to valley bottoms. The leaves were analyzed for their nutrient content, and that information, along with rainfall and slope data, were used to develop a map predicting phosphorous concentrations throughout the study area. The researchers predicted that stable ridgetop soils would have little phosphorous, while low-lying slopes and valleys were expected to contain large concentrations of the nutrient.

Those predictions were then tested with a remote sensing technique developed by Asner and Vitousek to analyze the chemical content of leaves in a forest canopy. The researchers flew over the study area in an aircraft specially equipped with an infrared spectrometer that detected the chemical concentrations in ohia leaves. The results of the flyover confirmed what the scientists had predicted--namely, that only about 17 percent of the landscape is nutrient-poor. It turned out that, while upland regions tended to be depleted of phosphorous, the slopes and valley bottoms were often as fertile as the most verdant forests in the Hawaiian Islands.

"Our study makes two important advances in the understanding of nutrient availability in tropical soils," Porder says. "First, it builds an explicit prediction of where in the landscape nutrient availability is likely to be high and low. Second, it uses remote airborne sensors to detect phosphorus concentrations in the forest canopy and independently confirms our predictions."

The authors point out that these results may apply to other tropical ecosystems, noting that about 10 percent of all tropical ecosystems "have slopes greater than 10 degrees, with higher percentages in Central America, Asia, parts of South America and some Pacific islands."

They note that, while topography and soil age are the dominant drivers of soil fertility in their study area, other factors--such as tectonic uplift, vegetation and climate--are likely to produce a similar patchwork of nutrient availability in the tropics.

"Our results indicate that not all old, tropical forests are nutrient-poor," Porder says. "Understanding natural variability in forest soil fertility is critical for understanding the response of tropical forests to climate and land use change. Hopefully our study will spur additional and much-needed research into the spatial patterns of nutrient availability of other tropical landscapes."

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>