Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soil fertility in the tropics can be influenced by landscape and precipitation

20.07.2005


A new study conducted in the Hawaiian Islands has revealed that landscape and erosion play crucial roles in determining soil fertility in tropical ecosystems.



"This study is the first to accurately predict the distribution of nutrients across a complex tropical forest landscape, and then to detect these shifts in nutrient status using airborne sensors," says Stanford University graduate student Stephen Porder, lead author of the study, which will be published in this week’s online edition of the Proceedings of the National Academy of Sciences (PNAS).

Porder’s co-authors are Carnegie Institution scientist Gregory P. Asner, an assistant professor (by courtesy) of geological and environmental sciences at Stanford; and Peter M. Vitousek, the Clifford G. Morrison Professor in Population and Resource Studies at Stanford. "Tropical soils often are assumed to be highly weathered and thus nutrient depleted," the authors write. But the study, which focused on the island of Kauai, revealed a complex "biogeochemical patchwork with almost equal areas of high and low nutrient availability."


Phosphorous, calcium and other minerals essential for plant growth are derived from the breakdown of bedrock as it is converted to soil. "As soil ages, this bedrock source is thought to be depleted, and these elements become increasingly scarce," Porder explains. "However, this process has been studied almost exclusively on uneroded surfaces, and thus it is uncertain how well it applies to actively-eroding landscapes."

In previous studies, Porder, Vitousek and their colleagues discovered that the erosion of mineral-rich rocks actually rejuvenated soils along several slopes in Hawaii, producing higher phosphorous concentrations.

The PNAS study was designed to determine the extent of nutrient rejuvenation in old Hawaiian forests. To find out, the researchers focused on a 7.7-square-mile area of Kauai that includes stable ridgetops, eroding slopes and valleys that receive very different amounts of annual rainfall.

The researchers first collected soil samples and leaves from native ohia trees along a series of transects running from hilltops to valley bottoms. The leaves were analyzed for their nutrient content, and that information, along with rainfall and slope data, were used to develop a map predicting phosphorous concentrations throughout the study area. The researchers predicted that stable ridgetop soils would have little phosphorous, while low-lying slopes and valleys were expected to contain large concentrations of the nutrient.

Those predictions were then tested with a remote sensing technique developed by Asner and Vitousek to analyze the chemical content of leaves in a forest canopy. The researchers flew over the study area in an aircraft specially equipped with an infrared spectrometer that detected the chemical concentrations in ohia leaves. The results of the flyover confirmed what the scientists had predicted--namely, that only about 17 percent of the landscape is nutrient-poor. It turned out that, while upland regions tended to be depleted of phosphorous, the slopes and valley bottoms were often as fertile as the most verdant forests in the Hawaiian Islands.

"Our study makes two important advances in the understanding of nutrient availability in tropical soils," Porder says. "First, it builds an explicit prediction of where in the landscape nutrient availability is likely to be high and low. Second, it uses remote airborne sensors to detect phosphorus concentrations in the forest canopy and independently confirms our predictions."

The authors point out that these results may apply to other tropical ecosystems, noting that about 10 percent of all tropical ecosystems "have slopes greater than 10 degrees, with higher percentages in Central America, Asia, parts of South America and some Pacific islands."

They note that, while topography and soil age are the dominant drivers of soil fertility in their study area, other factors--such as tectonic uplift, vegetation and climate--are likely to produce a similar patchwork of nutrient availability in the tropics.

"Our results indicate that not all old, tropical forests are nutrient-poor," Porder says. "Understanding natural variability in forest soil fertility is critical for understanding the response of tropical forests to climate and land use change. Hopefully our study will spur additional and much-needed research into the spatial patterns of nutrient availability of other tropical landscapes."

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>