Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boosting Vitamin C in Plants Can Help Reduce Smog Damage

13.07.2005


UCR research shows boosting plant vitamin C levels can minimize ozone’s damaging effects


Ozone-damaged plant (left) and normal plant (right). Photo courtesy of Gene Daniels/U.S. EPA



The harmful effects of smog on people and animals – the stinging eyes and decreased lung capacity – are the stuff of well-researched fact. Now, the body of knowledge about air pollution’s effects on plants has grown with University of California, Riverside Biochemistry Professor Daniel Gallie’s discovery of the importance of vitamin C in helping plants defend themselves against the ravages of ozone – smog’s particularly nasty component.

By manipulating dehydroascorbate reductase (DHAR), a naturally occurring enzyme that recycles vitamin C, to increase the level of the vitamin in leaves, Gallie has been able to reduce the harmful effects of ozone on plants, apparent as brown spots, stunted size, and lowered crop yields. He and Assistant Research Biochemist Dr. Zhong Chen published their findings in a recent paper titled Increasing Tolerance to Ozone by Elevating Foliar Ascorbic Acid Confers Greater Protection Against Ozone Than Increasing Avoidance, in the journal “Plant Physiology.”


Gallie’s previous research found that plants react to smog much like they react to drought, by closing pores (called stomata) present in their leaves. The closed pores protect plants from losing water and taking in ozone, but also prevent the production of sugars through photosynthesis, which are needed for the plant to grow.

“It’s clearly not an effective strategy to protect plants from the effects of long-term exposure to smog,” Gallie said.

Plants, he said, have two options to defend themselves from ozone. They can prevent ozone from entering the leaf by closing their stomata, or use the antioxidant qualities of vitamin C to detoxify the ozone that enters through open stomata and also protect the photosynthetic machinery in the leaf.

Studying acute and chronic ozone exposures, Gallie and Chen looked at which plants fared better, those with lower levels of vitamin C that closed their pores or those with higher levels of vitamin C, open pores, and higher levels of photosynthetic activity. Those with the higher levels of vitamin C fared better in the long run, in both instances, despite the fact that more ozone entered through the open pores of the leaf, Gallie said.

Gallie and Chen’s findings offer a clear direction for a strategy toward developing plants that will be able to grow and thrive in high-ozone environments such as cities and suburban areas.

“Because we’re seeing, especially in this country, the encroachment of urban areas into farm lands, we’re seeing an increased impact on agriculture. Moreover, ornamental plants used for urban and suburban landscaping are heavily affected by exposure to smog,” said Gallie.

The next step in Gallie’s research will focus on the apparent correlation between a plant’s increased vitamin C levels and increased photosynthetic activity.

“There seems to be multiple benefits of increasing the level of vitamin C in plants, including improving their tolerance to smog, improving photosynthesis, and improving their nutritional quality but more research is clearly needed,” he said.

The key question, at least in the near term, is to determine whether increased vitamin C and photosynthesis will result in greater crop yields, he added.

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>