Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Costly breeding programs for endangered species pay off

30.06.2005


Consequences of inbreeding often undetectable prior to release into wild



Comparative studies of captive breeding strategies conducted at Rice University bolster the case for costly and sometimes troublesome breeding programs that preserve maximum genetic variability in small populations of endangered species.

Worldwide, zoos spend millions of dollars each year transporting rare animals thousands of miles in order to breed them with their most distantly related relatives. Some have questioned the need for such programs, which can stress rare animals, even to the point of death.


Rice’s results, which are available online, are scheduled to appear in an upcoming issue of the journal Zoo Biology. The results are based on a yearlong study of 11 generations of houseflies. The study is the first to compare the so-called "maximum avoidance inbreeding," or MAI strategy, with regimens that allow limited inbreeding.

"In previous studies, a number of groups identified short-term benefits for breeding schemes that used limited inbreeding in order to produce stronger individuals," said Lisa Meffert, assistant professor of ecology and evolutionary biology and the lead researcher on the project. "Ours are the first tests of the long-term consequences of these strategies. In particular, we wanted to simulate several generations of captive breeding followed by several generations of breeding in the wild."

Meffert, post-doctoral researcher Stacey Day, graduate student Sara Hicks and pre-med student Nsuela Mukana found that populations in both breeding groups exhibited similar levels of fitness and fertility as long as they remained in a controlled, "captive" setting. However, after the simulated release into the wild, the MAI populations were less likely to go extinct or to suffer population crashes than were the populations that had undergone limited inbreeding.

"The benefits of maximum-avoidance inbreeding were difficult to detect as long as the populations remained captive," said Meffert. "It’s not clear why this is the case, but it could be that genes lost through minimal inbreeding allowed the MAI populations to better adapt to the harsh conditions in the wild."

Meffert chose to conduct her experiments on common houseflies because they breed every few weeks. This model system allowed her to simulate several years of breeding for endangered species that breed only once or twice per year.

In order to simulate small populations of rare animals in zoos, breeding lines were founded by just five pairs of males and female flies. Moreover, because flies lay many eggs, and most higher-order animals have small broods, each fly breeding line was allowed to grow by no more than 50 percent per generation.

Each time a pair of flies mated, researchers measured the fitness of the pair by counting the number of eggs the female laid, and by measuring the number of eggs that hatched.

In the MAI breeding scheme, brothers and sisters were never allowed to mate and were instead paired only with offspring from other breeding pairs. In the alternate breeding scheme, the females were allowed to contribute a disproportionate share of offspring to subsequent generations, based on their fitness scores.

The release into the wild was simulated by adding environmental stress. In the "post-release" breeding scenario, temperatures in incubators were altered on a 12-hour cycle based upon the high and low temperatures recorded in Houston that day.

In both strategies, all breeding lines survived in captivity. In the "wild" setting, four of the inbred populations went extinct, compared to just one extinction for the MAI lines.

"Apparently, the stressful environment served to select only the most fit lines while the more benign environment allowed low-fitness lines to persist in captivity," said Meffert.

Though the findings clearly support the case for expensive MAI breeding schemes for some endangered animals, Meffert suspects that might not be the case for species that reproduce faster or have larger broods. For those animals, alternate breeding schemes might indeed prove more effective, and her group is conducting research to see if that’s the case.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>