Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Costly breeding programs for endangered species pay off

30.06.2005


Consequences of inbreeding often undetectable prior to release into wild



Comparative studies of captive breeding strategies conducted at Rice University bolster the case for costly and sometimes troublesome breeding programs that preserve maximum genetic variability in small populations of endangered species.

Worldwide, zoos spend millions of dollars each year transporting rare animals thousands of miles in order to breed them with their most distantly related relatives. Some have questioned the need for such programs, which can stress rare animals, even to the point of death.


Rice’s results, which are available online, are scheduled to appear in an upcoming issue of the journal Zoo Biology. The results are based on a yearlong study of 11 generations of houseflies. The study is the first to compare the so-called "maximum avoidance inbreeding," or MAI strategy, with regimens that allow limited inbreeding.

"In previous studies, a number of groups identified short-term benefits for breeding schemes that used limited inbreeding in order to produce stronger individuals," said Lisa Meffert, assistant professor of ecology and evolutionary biology and the lead researcher on the project. "Ours are the first tests of the long-term consequences of these strategies. In particular, we wanted to simulate several generations of captive breeding followed by several generations of breeding in the wild."

Meffert, post-doctoral researcher Stacey Day, graduate student Sara Hicks and pre-med student Nsuela Mukana found that populations in both breeding groups exhibited similar levels of fitness and fertility as long as they remained in a controlled, "captive" setting. However, after the simulated release into the wild, the MAI populations were less likely to go extinct or to suffer population crashes than were the populations that had undergone limited inbreeding.

"The benefits of maximum-avoidance inbreeding were difficult to detect as long as the populations remained captive," said Meffert. "It’s not clear why this is the case, but it could be that genes lost through minimal inbreeding allowed the MAI populations to better adapt to the harsh conditions in the wild."

Meffert chose to conduct her experiments on common houseflies because they breed every few weeks. This model system allowed her to simulate several years of breeding for endangered species that breed only once or twice per year.

In order to simulate small populations of rare animals in zoos, breeding lines were founded by just five pairs of males and female flies. Moreover, because flies lay many eggs, and most higher-order animals have small broods, each fly breeding line was allowed to grow by no more than 50 percent per generation.

Each time a pair of flies mated, researchers measured the fitness of the pair by counting the number of eggs the female laid, and by measuring the number of eggs that hatched.

In the MAI breeding scheme, brothers and sisters were never allowed to mate and were instead paired only with offspring from other breeding pairs. In the alternate breeding scheme, the females were allowed to contribute a disproportionate share of offspring to subsequent generations, based on their fitness scores.

The release into the wild was simulated by adding environmental stress. In the "post-release" breeding scenario, temperatures in incubators were altered on a 12-hour cycle based upon the high and low temperatures recorded in Houston that day.

In both strategies, all breeding lines survived in captivity. In the "wild" setting, four of the inbred populations went extinct, compared to just one extinction for the MAI lines.

"Apparently, the stressful environment served to select only the most fit lines while the more benign environment allowed low-fitness lines to persist in captivity," said Meffert.

Though the findings clearly support the case for expensive MAI breeding schemes for some endangered animals, Meffert suspects that might not be the case for species that reproduce faster or have larger broods. For those animals, alternate breeding schemes might indeed prove more effective, and her group is conducting research to see if that’s the case.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>