Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salmon survival, cleaner hydropower focus of ORNL research

30.06.2005


A new advanced turbine being tested at Wanapum Dam in Washington state produces nearly 5 percent more power, but before more are installed researchers at Oak Ridge National Laboratory are getting input from several thousand fish.



The project is part of an upgrade to a hydroelectric power plant owned by Public Utility District No. 2 of Grant County, and utility officials want to know how fish-friendly the new minimum gap runner turbine is compared to the 40-year-old turbine it replaced. Several Department of Energy Hydropower Program studies seek to answer that and other questions.

"Power company and DOE laboratory biologists are looking at direct mortality to fish caused by injuries during turbine passage, and they’re also attempting to assess indirect mortality," said Glenn Cada of ORNL’s Environmental Sciences Division. "Even if a fish isn’t killed immediately after passing through a turbine, it may become disoriented or physiologically stressed by the experience, and an apparently uninjured fish may fall easy prey to a predator or die later because of the passage stresses."


Indeed, the journey through a turbine isn’t easy because fish are subjected to high pressures, shear forces, turbulence and possible mechanical strikes. Still, every year the vast majority of an estimated 2.5 million juvenile Chinook salmon and juvenile steelhead successfully make it through the 10 turbines at Wanapum Dam, located on the Columbia River. Nevertheless, DOE, Grant County officials and resource agencies want to further improve the odds, and they’re hoping that this project, one of the largest fish survival studies ever at a single hydroelectric dam, helps.

While the mortality rate of fish passing through conventional hydropower turbines ranges from 5 percent to 15 percent or more, the goal of DOE’s hydropower program is to reduce these rates to 2 percent. Advanced turbines are approaching this goal by reducing turbulence, pressure changes and shear that occur within the turbine. The new minimum gap runner design at Wanapum Dam, however, has one more blade (six vs. five) and more wicket gates (32 vs. 20) than the older Kaplan turbine. So while the new design turbine generates more power, utility district officials want to ensure that there are no adverse effects on fish.

If the Federal Energy Regulatory Commission deems the fish passage survival rate through the new turbine acceptable, the utility district plans to replace the remaining nine units at a rate of one per year. Replacing the Kaplan turbines with minimum gap runner turbines could increase the electrical power rating of the Wanapum Dam from 895 megawatts to 940 megawatts.

In looking at indirect mortality, Cada and ORNL colleague Mike Ryon measure something called "C-start," or burst, swimming performance, a reflex behavior typically used by fish to escape predators. In this test, uninjured Chinook salmon that have passed through the turbine are rapidly transferred to shore, where their C-start behavior is filmed in the first minutes after exposure using a high-speed camera.

"This test allows us to evaluate whether a turbine-passed fish’s predator avoidance behavior is compromised compared to the behavior of unstressed control fish," Cada said. "In addition, we are testing the hypothesis that the advanced turbine induces less sub-lethal stress than the conventional turbine."

A final report for the C-start behavior study will be complete by September.

In another ORNL-led study, Environmental Sciences Division researchers Mark Bevelhimer and Marshall Adams are examining blood and gill tissue from salmon that have passed through the turbine to determine the prolonged stress response to physical trauma experienced during passage through the turbine. Results will help researchers assess the level of general stress experienced by the juvenile salmon that have passed through the turbine, plus assess the rate of stress alleviation after a recovery period.

Meanwhile, Pacific Northwest National Laboratory researchers are developing methods to provide more complete information about the complex hydraulics of the turbine environment. They have tested a sophisticated "6 degree of freedom" sensor fish that they send through the turbine to gather information about water velocities, pressures and levels of turbulence. They expect this work to provide some of the first measurements of the fluid stresses experienced by fish passing through a turbine.

Another PNNL study involves immersing fish in a non-toxic dye that adheres to tissue that is exposed when a fish has been injured. Under particular wavelengths of light, the dye reveals injuries that might not be detected with the naked eye. Injuries revealed by the dye technique will be photographed and archived.

Depending on weather patterns, hydroelectric power accounts for between 7 percent and 12 percent of the electricity generated in the United States, but it plays a far bigger role along the Pacific Coast. There, it accounts for more than 50 percent of the electricity generated.

"One of the goals of the Department of Energy hydropower program is to find engineering solutions that will make the route of passage through turbines safer for fish," Cada said. "If we can accomplish that goal, hydropower will become a more acceptable form of clean renewable energy."

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>