Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare chalk grassland takes 50 years to recover from military use

20.06.2005


Rare and fragmented chalk grasslands may take at least half a century to recover from the damage done to them by military training, according to new research published in the British Ecological Society’s Journal of Applied Ecology.



Working with historical aerial photographs taken on the Salisbury Plain Training Area between 1945 and 1995, Dr Rachel Hirst and colleagues from the Centre for Ecology and Hydrology and the University of Liverpool identified 82 sites from which they sampled vegetation and soil. They found that, while neutral (mesotrophic) grasslands took between 30 and 40 years to re-establish after disturbance during military training, areas of chalk grassland took at least 50 years to recover.

The long-lasting damage is due not only to vegetation being destroyed by tanks and shelling but also by soil compaction. According to Hirst: "Large military vehicles can change the horizontal and vertical structure of vegetation communities through the crushing and cutting of vegetation, and soil compaction effects decrease soil microporosity and rainfall infiltration capacity, altering nutrient availability and restricting root growth."


Covering 38,000 hectares, Salisbury Plain Training Area is the largest military training area in the UK, and the only training area suitable for large-scale tactical armoured vehicle exercises. However, it is also one of the largest Sites of Special Scientific Interest (SSSI) in the UK, containing the largest expanse of unimproved chalk grassland in north-west Europe - a habitat of particular conservation interest.

The findings not only have implications for how the Ministry of Defence manages the more than 250 SSSIs in its training areas, but also how much pressure certain areas of the countryside can bear from the increasing use of off-road vehicles.

"Chalk grasslands remain a rare and fragmented habitat type in north-west Europe, and outside Salisbury Plain, the rolling chalk downlands of southern England, much of which enjoy statutory protection, provide recreational resources for walking, horse riding and cycling. These activities cannot take place without some localised habitat disturbance, but can be managed more effectively if the ecosystem dynamics are better understood. Appreciation of the length of time that intensively disturbed grassland can take to re-establish may encourage more effective control measures at other sites," Hirst says.

Lynne Miller | EurekAlert!
Further information:
http://www.blackwellpublishing.com

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>