Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clear rules needed to govern deep sea bioprospecting: UNU

09.06.2005


Vast genetic treasure on sea beds

Vast genetic resources – "blue gold" on the international deep sea floor – need protection from unfettered commercial exploitation, warns a new report from the Japan-based United Nations University Institute for Advanced Studies (UNU-IAS). Increasingly recognized as important to humankind for their potential medical and other uses, deep sea resources are now more accessible and vulnerable than ever because of rapid advances in exploration technology, the report says.

Known as "extremophiles," the genetic make-up of organisms of the deep that live in extreme conditions of pressure, temperature and toxicity is drawing enormous interest from scientists and companies bioprospecting for possible pharmaceutical or industrial applications. Already several valuable products have been created and there is growing recognition of the potential of deep sea genes to advance human welfare.



The new report, Bioprospecting of Genetic Resources in the Deep Seabed (online at http://www.ias.unu.edu/binaries2/DeepSeabed_FINAL.pdf), cites rising concern about the absence of clear rules governing access to and the sharing of benefits derived from the "global commons" of the sea beds and about the potential for severe, perhaps permanent damage to these unique and sensitive ecosystems, which include seamounts, cold seeps and hydrothermal vents – the latter considered nurseries for life on Earth.

"Deep sea ecosystems hold the promise of huge potential contributions to future human well-being, provide our planet with vital climate-related and other ecological services, and have much to teach us about life processes," says UNU-IAS Director A.H. Zakri.

"The unfettered and unregulated exploitation of international sea beds and the organisms living there could have serious long-term consequences for humankind," he says. "And for the private sector, uncertainty caused by the absence of clear, globally-agreed rules deters important research and investment decisions."

"The legal and policy framework is not even close to keeping pace with the fast-evolving science and technology of deep seabed bioprospecting," says report contributor Sam Johnston, Senior Research Fellow at UNU-IAS.

"The international debate still sees governments divided over whether or how to regulate deep seabed bioprospecting. This division stems from limited knowledge about the environmental impacts and economic potential of deep seabed bioprospecting, combined with a strong sensitivity to countries’ freedoms in international areas."

"Ethical concerns have been raised with regard to the status of deep seabed genetic resources," says Salvatore Arico of UNESCO, a Visiting Research Fellow at UNU-IAS and a lead author of the report with Charlotte Salpin. "These resources lie within the global commons, but are they free for anyone to take or are they the heritage and property of all humankind?"

Growing threats to fragile ecosystems

Deep sea expeditions are increasingly frequent, their focus shifting from geological and geophysical study to ecological, biological, physiological and bioprospecting, the report says. While most research is still purely scientific, the report predicts that the promise of important new products will lead to an increase in commercial exploration.

The report cites the need to prevent harm from research in deep seabed areas, especially those particularly sensitive to disturbances such as cold seeps and seamounts.

"While it is impossible to quantify the damage caused by such research on the deep seabed environment, threats include destruction of habitats, unsustainable collection, alteration of local hydrological and environmental conditions, and pollution of various nature. The same activities can have very different impacts in various deep sea ecosystems, and cumulative impacts over time, such as those associated with deep sea trawling, have already resulted in the extinction of species."

Growing value of products from marine biotechnology

The world’s oceans host 32 of the 34 known phyla on Earth, the report says. Species diversity is known to be as high as 1,000 per square meter in the Indo-Pacific Ocean. Significantly, the ratio of potentially useful natural compounds is higher in marine than terrestrial organisms. There is, therefore, a higher probability of commercial success with marine-sourced material. The odds of success are long, however; just one to two percent of pre-clinical candidates become commercial products.

Nevertheless, the report says all major pharmaceutical firms, including Merck, Lilly, Pfizer, Hoffman-Laroche and Bristol-Myers Squibb, have marine biology departments, and cites the following estimates:

  • Worldwide sales in 2000 of marine biotechnology-related products: US$ 100 billion;
  • Annual profits from a compound derived from a sea sponge to treat herpes: US$ 50 million to US$ 100 million;
  • Value of anti-cancer agents from marine organisms: US$ 1 billion a year.

Marine-derived drugs can be used as antioxidant, anti-fungal, anti-HIV, antibiotic, anti-cancer, anti- tuberculosis and anti-malaria. Applications for the treatment of Alzheimer’s disease, cystic fibrosis and impotence are also under consideration.

Other compounds have anti-inflammatory properties and one is used as an anti-irritant in cosmetics.

A hormone extracted from salmon has been found effective in preventing osteoporosis while a salmon-derived sulfate is an antidote to the anticoagulant heparin.

Sponges are particularly targeted as potential sources of pharmaceutical products. One of the most effective treatments for leukemia is based on derivatives of a sponge while a sponge-derived steroid compound completed phase one US trials as an asthma drug in 2000. Other research in progress includes treatments for breast and ovarian cancer.

Impediments to this research include not just the high expedition costs but the absence of clear rules governing resource access benefits sharing. Some companies say uncertainty over access procedures is a major deterrent to their research and investment, according to the report.

Seabed is not a lawless realm, but almost

Bioprospecting in the seabed within territorial limits is currently regulated by the UN Convention on the Law of the Sea (UNCLOS), which determines states’ jurisdiction, rights and obligations in the oceans, as well as in the Convention on Biological Diversity, which governs access to genetic resources and benefit-sharing.

While most countries have regulations on marine scientific research in their waters and seabed, only a few have legislation regulating access to and exploitation of their marine and other genetic resources.

Many of the world’s unique seabed ecosystems lie in international waters beyond national jurisdiction with no international rules. And no state has yet adopted measures addressing bioprospecting undertaken by its nationals in international waters.

The UNU-IAS report identifies shortcomings in UNCLOS, the Convention on Biological Diversity and intellectual property rights instruments governing access and benefit-sharing to genetic resources. These include the need to:

  • Establish whether describing the sequence of a genome can be considered an invention;
  • Define bioprospecting;
  • Develop criteria and guidelines to help states determine the implications of marine scientific research;
  • Decide if marine scientific researchers/academia and private companies should be treated differently in access to deep seabed genetic resources.

Designing a regime for bioprospecting in the deep seabed

The report says regional agreements could be used as a first step towards a comprehensive international regime to protect the deep seabed from over-exploitation.

It also suggests the UN General Assembly adopt guidelines on deep seabed bioprospecting to be used until a binding regime is developed. The guidelines could facilitate cooperation and coordination between states and, drawing on existing global and regional instruments, include measures on conservation, sustainable use and the sharing of benefits.

Terry Collins | EurekAlert!
Further information:
http://www.unu.edu
http://www.ias.unu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>