Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use meteors to investigate climate change and giant waves at the ‘edge of space’

23.05.2005


A new research radar based in Antarctica is giving scientists the chance to study the highest layer of the earth’s atmosphere at the very edge of space.



Using the new radar, scientists will be able to investigate climate change and explore the theory that while the lower atmosphere is warming, the upper atmosphere is cooling by as much as 1 degree Centigrade each year.

They will also be able to find out more about the complex waves, tides and other mechanisms that link this region - known as the mesosphere - to the lower regions of the atmosphere.


At heights of around 80-100km (50-62 miles) the mesosphere is notoriously difficult to investigate and is the least-explored part of the Earth’s atmosphere.

The low air pressure at this altitude means that it is impossible to fly aircraft in the mesosphere and even the huge weather balloons that are used to measure stratospheric ozone cannot climb high enough to reach this altitude.

Satellites begin to burn up when they enter the mesosphere, so the new radar - just installed at the Rothera research base in Antarctica in a joint project between the University of Bath and the British Antarctic Survey (BAS) - will help scientists explore the region using remote sensing.

“Fortunately, nature provides us with an excellent answer to the problem of investigating the mesosphere,” said Professor Nick Mitchell who heads the project in the Department of Electronic and Electrical Engineering at the University of Bath.

“Meteors, or ‘shooting stars’, burn up in the mesosphere. The meteors drift just like weather balloons so we can use a radar on the Earth and bounce radio waves off the meteors to find how fast they are moving and so measure the winds at the edge of space.

“The fading of the radio echoes from the meteors also lets us measure the temperature of the atmosphere. We can detect thousands of meteors in any one day and with this information study the waves and tides that flow around the planet on a continuous basis.

“The mesosphere has been called the miner’s canary for climate change; meaning that it is very sensitive and the changes there may be larger than in any other part of the atmosphere.

“Evidence of these changes comes from sightings of noctilucent clouds, very unusual clouds seen only in polar regions and known to be in the mesosphere. These clouds don’t seem to have been observed before 1885 and may mark the onset of a long-term cooling of the upper atmosphere”.

The researchers hope to use this temperature data to see if the effects of climate change are present in the upper atmosphere.

The radar is the latest element in a global array of radars being installed by the University of Bath group. It will be used in tandem with an identical radar at Kiruna, inside the Arctic Circle in Northern Sweden, to find out if there are any differences between the Arctic and Antarctic upper atmosphere.

“We know that there are big differences lower down in the atmosphere, for instance in the stratosphere the ozone hole is much larger over the Antarctic than over the Arctic, but we don’t really know what the differences are like higher up,” said Professor Mitchell.

First results from the radar show that it is detecting about 5,000 meteors ever day. Analysis at the University of Bath has revealed frigid temperatures in the mesosphere, the lowest temperatures of about -130ºC, paradoxically occurring at midsummer.

The Rothera radar has been installed by Dr Peter Younger, a postdoctoral researcher from the University assisted by colleagues from BAS.

The radar is made of six antennas about 2 metres high set up over a space the size of a football pitch. The site itself is a rocky beach on the edge of Marguerite Bay – a landscape of icebergs, penguins and seals. Dr Younger has just returned to the UK having spent two months on the installation.

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk/pr/releases/antarcticradar.htm

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Hot vibrating gases under the electron spotlight

12.12.2017 | Life Sciences

New silicon structure opens the gate to quantum computers

12.12.2017 | Information Technology

Using drones to estimate crop damage by wild boars

12.12.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>