Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-clean coal to power a greener future

11.05.2005


Engineers in Nottingham are developing ultra-clean coal that could make power generation 50% more efficient and reduce carbon dioxide emissions by a third. A team at The University of Nottingham is one of only two in the world working on ground-breaking techniques to purify one of the world’s main energy sources.



They have been awarded £120,000 to help them develop the ultra-clean fuel for the power stations of the future. Dr Karen Steel, of the School of Chemical, Environmental and Mining Engineering, said: “Ultra-clean coal is seen as something of a Holy Grail in energy generation. “It’s a very efficient way of producing electricity, and it’s also much less harmful for the environment. This is an exciting project in the sense that ultra-clean coal has world-wide applicability.”

When coal is dug from the ground, it contains about 15% mineral matter — including sulphates, oxides, clays, quartz and carbonates — which greatly restricts its use. A chemical leaching process being developed by Dr Steel and her team promises to reduce this figure to less than 0.1% — meaning much greater efficiency per tonne of coal and up to 33% less carbon dioxide (CO2) pollution from the power station. CO2 emissions are implicated in global warming. Currently almost a third of such emissions in the UK come from power stations.


Most conventional coal-fired power stations burn coal to produce steam, which turns turbines linked to a generator. Although efficiencies have gradually risen over the years, they are typically around 37 per cent, which means just over a third of the energy potential of the coal is converted into electricity. But because ultra-clean coal can be burned directly in gas turbines, it has a potential efficiency of around 55 per cent — a relative increase of 50% from current levels.

Gas turbines are similar to aircraft jet engines and are a much more efficient way of using coal to make electricity — but normal coal cannot be used in them because impurities damage the turbine blades. Dr Steel added: “There has been an assumption that it would be too expensive to produce ultra-clean coal. “But our aim is to do it cheap, so the coal will sell for not much more than it would otherwise. There are potential markets for ultra-clean coal technology all over the world – and not only for power generation. Ultra-clean coal could also be converted to carbon-rich products such as carbon electrodes used in aluminium smelting.”

The technique being developed at University Park has been dubbed “The Nottingham process for ultra-clean coal”. A grant of £120,000 has been made by the Engineering and Physical Sciences Research Council (EPSRC). Ultra-clean coal could also help reduce the world’s dependence on oil, said Dr Steel. There are greater untapped reserves of coal, and they are generally located away from the politically sensitive Middle East. For example, China and the USA both have large reserves of coal — but not much oil.

The only other body working on ultra-clean coal technology is the Commonwealth Scientific and Industrial Research Association in Australia. They are investigating a different technique in pursuit of the same goal.

Dr Karen Steel | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>