Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ultra-clean coal to power a greener future


Engineers in Nottingham are developing ultra-clean coal that could make power generation 50% more efficient and reduce carbon dioxide emissions by a third. A team at The University of Nottingham is one of only two in the world working on ground-breaking techniques to purify one of the world’s main energy sources.

They have been awarded £120,000 to help them develop the ultra-clean fuel for the power stations of the future. Dr Karen Steel, of the School of Chemical, Environmental and Mining Engineering, said: “Ultra-clean coal is seen as something of a Holy Grail in energy generation. “It’s a very efficient way of producing electricity, and it’s also much less harmful for the environment. This is an exciting project in the sense that ultra-clean coal has world-wide applicability.”

When coal is dug from the ground, it contains about 15% mineral matter — including sulphates, oxides, clays, quartz and carbonates — which greatly restricts its use. A chemical leaching process being developed by Dr Steel and her team promises to reduce this figure to less than 0.1% — meaning much greater efficiency per tonne of coal and up to 33% less carbon dioxide (CO2) pollution from the power station. CO2 emissions are implicated in global warming. Currently almost a third of such emissions in the UK come from power stations.

Most conventional coal-fired power stations burn coal to produce steam, which turns turbines linked to a generator. Although efficiencies have gradually risen over the years, they are typically around 37 per cent, which means just over a third of the energy potential of the coal is converted into electricity. But because ultra-clean coal can be burned directly in gas turbines, it has a potential efficiency of around 55 per cent — a relative increase of 50% from current levels.

Gas turbines are similar to aircraft jet engines and are a much more efficient way of using coal to make electricity — but normal coal cannot be used in them because impurities damage the turbine blades. Dr Steel added: “There has been an assumption that it would be too expensive to produce ultra-clean coal. “But our aim is to do it cheap, so the coal will sell for not much more than it would otherwise. There are potential markets for ultra-clean coal technology all over the world – and not only for power generation. Ultra-clean coal could also be converted to carbon-rich products such as carbon electrodes used in aluminium smelting.”

The technique being developed at University Park has been dubbed “The Nottingham process for ultra-clean coal”. A grant of £120,000 has been made by the Engineering and Physical Sciences Research Council (EPSRC). Ultra-clean coal could also help reduce the world’s dependence on oil, said Dr Steel. There are greater untapped reserves of coal, and they are generally located away from the politically sensitive Middle East. For example, China and the USA both have large reserves of coal — but not much oil.

The only other body working on ultra-clean coal technology is the Commonwealth Scientific and Industrial Research Association in Australia. They are investigating a different technique in pursuit of the same goal.

Dr Karen Steel | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>