Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Global warming plus natural bacteria could release vast carbon deposits currently stored in Arctic soil


Increasing concentrations of carbon dioxide in the atmosphere will make global temperatures rise. By studying soil cores from the Arctic, scientists have discovered that this rise in temperature stimulates the growth of microorganisms that can break down long-term stores of carbon, releasing them into the atmosphere as carbon dioxide. This will lead to further increases in global temperatures.

Carbon is held in soil either in material that is easily degraded by chemical and bacterial action (labile soil carbon), or in material that is less easily degraded by microorganisms (resistant soil carbon). About one third of the world’s soil carbon is located in high latitudes such as the Arctic, and much of this effectively locked away in recalcitrant stores.

If this carbon were ever released into the atmosphere as carbon dioxide, the concentration of this ‘green-house gas’ would increase considerably, leading to a substantial increase in global warming.

The question that researchers in Austria, Russia and Finland asked was whether increasing global temperatures that are already predicted could enable micro organisms to use this carbon. Their results are published in this week’s edition of Rapid Communications in Mass Spectrometry.

The researchers incubated soil cores at 2oC, 12oC and 24oC. They found that resistant soil carbon was preferentially respired by arctic microbes at higher temperatures, presumably due to a shift in microbial populations.

They also found that the change in the relative proportion of different microorganisms in the soil was not driven by a depletion of more readily available carbon, but simply by the change in temperature.

“This temperature driven change in availability of resistant carbon is of crucial importance in the context of climate change,” says co-author Andreas Richter who works at the Institute of Ecology and Conservation Biology at the University of Vienna, Austria. “It may be that the whole idea of ‘resistant carbon compounds’ in arctic soils may only be relevant within a cool world and have no place in a future warmer world.”

Julia Lampam | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>