Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Israeli, U.S., German Researchers Use Acoustic 3-D Imaging System To Unveil Remarkable Behavior Of Ocean Plankton


An international team of scientists from Israel, the United States and Germany, led by Prof. Amatzia Genin of the Hebrew University of Jerusalem and the Interuniversity Institute for Marine Sciences in Eilat, has provided, for the first time, evidence of the remarkable dynamics responsible for the formation of large aggregations of microscopic animals in the ocean.

From the surface, the ocean appears to be vast and uniform. But beneath the surface, countless number of tiny, nearly transparent animals, called zooplankton, are swept into clusters and patches by ocean currents. The very survival of many zooplankton predators—from invertebrates to whales—and the success of fishermen catches can depend on their success at finding those patches. The new findings indicate that zooplankton are passively drifting with the current, as their name implies (“planktos” = “drifting” in Greek), but only in the horizontal direction, not in the vertical. Indeed, in the vertical, these creatures show a great ability to go “against the flow.”

Although scientists and fishermen have known for a long time that zooplankton spend their life suspended in a constantly flowing environment, an understanding of their responses to ocean currents has remained elusive, mainly due to technological limitations in tracking the motion of the minuscule animals.

Now, the recent development of a three-dimensional, acoustic imaging system by Jules Jaffe of the Scripps Institution of Oceanography at the University of California, San Diego, has opened the door for a team of researchers to track several hundred thousand individual zooplankton at two coastal sites in the Red Sea. In addition to Prof. Genin, the team included his graduate student Ruth Reef; Dr. Jules Jaffe and Prof. Peter Franks from the Scripps Institution of Oceanography; and Dr. Claudio Richter from the Center for Tropical Marine Ecology in Bremen, Germany.

Their findings, reported in the May 6 issue of the prestigious journal Science, show that these small animals effectively keep their depth by “treadmilling” against upwelling and downwelling currents at speeds of up to several tens of body-lengths per second. Downward-flowing water in the ocean is always accompanied by horizontal flows, forming a convergence, or “downwelling” zone. When zooplankton swim upward against such a downward current, they form patches as more and more individuals are brought in with the horizontal currents and concentrated in the downwelling zone.

“Clumped distribution, termed ‘patchiness,’ is one of the most ubiquitous characteristics of oceanic zooplankton,” said Genin, lead author of the Science paper. “Aggregations (of the tiny animals) are found on all scales, from millimeters to areas covering hundreds of kilometers. Understanding the mechanisms that produce zooplankton patchiness is a central objective in biological oceanography.”

The new imaging system, Fish TV, uses multibeam sonar to uniquely measure animal movement. The system allowed the researchers to analyze the swimming behavior of more than 375,000 individual zooplankton swimming against vertical currents. Swimming in this manner allows the plankton to keep their depth, a behavior which was postulated long ago but had never been measured in the ocean until now. The scientists say it is remarkable that the small zooplankton are capable of remaining at a constant depth with such high precision in the face of such strong vertical currents. The ecological implications of this behavior carry far-reaching consequences for predatory fishes, whales and humans.

The results of the multinational research project were captured during three experiments lasting several weeks at two sites in the Red Sea, near the coral reef of Eilat in Israel and at Ras Burka off the coast of Egypt’s Sinai Peninsula. At the sites, scuba divers attached Fish TV’s sonar head (“transducer”) on a large underwater tripod, raised some 20 feet above the sea floor. The transducer was cabled to a control and data-acquisition unit consisting of a computer and other electronic hardware. Fish TV’s transmitters sent out 1.6 megahertz “pings” that bounced off the zooplankton and returned data to the instrument’s receivers. It’s a system not unlike those used in ultrasound procedures for biomedical applications.

“That small zooplankton are capable of remaining at a constant depth with a precision of centimeters, sometimes in the face of strong vertical currents, implies that these organisms have extremely sensitive depth sensors, the nature of which is yet unknown,” said Genin. “That this depth-keeping behavior has evolved in so many different species implies that this energetically demanding behavior provides significant, yet poorly understood benefits. Revealing those benefits and the nature of depth sensing will be a major and exciting challenge for future research in zooplankton ecology and evolution.”

The research was funded by the German Ministry for Education and Research through the “Red Sea Program” and the U.S.-Israel Binational Science Foundation. Jaffe was supported by the National Science Foundation, the Office of Naval Research and California Sea Grant.

Jerry Barach | Hebrew University
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>