Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Dead zone’ area in Gulf could be increasing, researchers say

27.04.2005


The "dead zone" area of the Gulf of Mexico – a region that annually suffers from low oxygen which can result in huge marine life losses – has appeared much earlier this year, meaning it could be potentially larger in 2005 and affect marine life more adversely than normal, researchers are reporting.



A team of scientists from Texas A&M University, Texas A&M at Galveston, Louisiana State University and NASA recently surveyed the dead zone in the northern Gulf of Mexico and their findings show that the area’s water contains lower oxygen levels than expected this time of year.

That could mean the dead zone area could be more severe in 2005 and perhaps cover an even larger area than in previous years, says Steve DiMarco, associate professor in the Department of Oceanography at Texas A&M and leader of the project. "During January and February of this year, the flow of the Mississippi River was larger than at any time in 2004," DiMarco explains. "That means the stratification levels between the fresh river water and heavier salt water could results in increased hypoxia, which creates the dead zone."


Hypoxia is a term for extremely low levels of oxygen concentrations in water. Hypoxia can result in fish kills and can severely impact other forms of marine life where it is present.

The dead zone area covers about 6,000 square miles in the Gulf.

The dead zone is located along the Louisiana coast where the Mississippi and Atchafalaya Rivers empty into the gulf. The dead zone area typically develops in late spring and early summer following the spring flood stage of the rivers, which bring large amounts of nutrients – often in the form of fertilizer – into the Gulf of Mexico.

The Mississippi is the largest river in the United States, draining 40 percent of the land area of the country. It also accounts for almost 90 percent of the freshwater runoff into the Gulf of Mexico. "We saw no hypoxia in this area until June of last year, and this year we found in late March," DiMarco says. "If the physical conditions we noticed continue, it could mean an unusually strong hypoxic zone this year, and that’s not good news."

DiMarco said the team studied an area between Southwest Pass, La., and the Calcasieu ship channel. They were on the Gyre, a research vessel owned by Texas A&M, and the project is funded by NOAA (National Oceanic and Atmospheric Administration.).

DiMarco said the most intense hypoxia levels are usually between 30 to 60 feet below the surface. Fish in this area can be "stressed," meaning they can die or, at the very least, move to other areas, which adversely affects fishermen in the dead zone region. "Bottom-dwelling marine life, where some of the most intense hypoxia levels are, can easily die," he says. "This area is of immense importance to people along the northern Gulf of Mexico," he adds. "We plan to return there in May, July, August and October to collect more data and see what condition the dead zone area is at that time."

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>