Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford gut check shows diversity of intestinal ecosystem

15.04.2005


The universe of microbes that lives in your stomach may be nearly as unique as your fingerprint, according to researchers at the Stanford University School of Medicine who have embarked on the early stages of exploring the intestinal ecosystem.

Using molecular techniques that detect all known types of microbes and borrowing statistical techniques from field ecology and population genetics, Paul Eckburg, MD, a postdoctoral scholar in infectious diseases and geographic medicine, conducted the most extensive study to date surveying the inhabitants of the lower digestive tract. In the three healthy subjects he studied, he found 395 unique bacterial species.

"The intestinal flora is critical to human physiology and a wide spectrum of disease, but the first step in studying this ecosystem is to figure out who is there and how the community census varies in time and space," said Eckburg, the lead author of the study published in this week’s online edition of Science Express. "But even with this large sequencing project, which produced orders of magnitude more sequence data than had been generated in the past, we are not completely there yet. This is just the tip of the iceberg."



Eckburg works with David Relman, MD, associate professor of medicine (infectious diseases and geographic medicine) and of microbiology and immunology. Relman’s lab at the Veteran Affairs Palo Alto Heath Care System specializes in microbial pathogen discovery and human microbial ecology, and in appreciating the roles played by microbes in human health and disease.

The paper by Eckburg and Relman is intended as the first of several studies looking at how microbial communities vary according to host, diet, geography, disease and other variables.

To distinguish individual bacteria among the hundreds of types in the samples, Eckburg took advantage of a technique that compares the genetic sequence of a molecule shared by bacteria and archaea. The molecule, 16S rRNA, plays a role in the translation of the genetic code and thus is critical to the organisms. However, small variations in the 16S rRNA gene sequences allow scientists to detect distinct bacteria.

For each of the three research subjects, the researchers analyzed samples from six different anatomical sites inside the large intestine as well as a stool sample.

Eckburg and his team determined more than 13,000 sequences of 16S rRNA. Most of what they identified included the usual suspects in the intestinal flora, but there were surprises. Nearly two-thirds of the bacteria they identified were novel, meaning that they had no genetic close neighbors in the existing databases that store sequence information about all known species.

"We thought we would find new ones, but it was a bit surprising to see such a large percentage that had remained unidentified," said Eckburg. "Despite this large effort, we are still not approaching the point of complete coverage of the intestinal community in any one individual - much less the complete coverage of all human intestinal communities." In contrast, the investigators found very limited diversity within the archaea, microbes that look a lot like bacteria but are genetically and biochemically as different from bacteria as bacteria are from humans.

The team also used the samples to examine how microbial communities differ among locations within the intestine as well as among different people.

"We were surprised at the degree to which an individual determines the particular picture of microbial diversity that we see," said Relman. "Variation between individuals had been suspected, but our data proved to be a dramatic confirmation of this belief."

An interesting corollary of this finding is that the ability to create a comprehensive census of the microbes living inside a person could have implications for human forensics. Unlike people’s genetic makeup, their endogenous microbial communities may indicate where they have been and what activities they have pursued in terms of travel, diet, antibiotic use and the like.

Relman emphasized that the study looked at only a limited number of individuals and examined only one genetic feature of the microbes, so there are many studies that must and will follow.

It took the team about a year to carry out this analysis of the microbial flora from three people. Although the process can now be done faster, Eckburg and Relman said they plan to complement this current approach with the use of microarray technology. The latter will allow them to analyze samples much more quickly. They have been working with biochemistry professor Patrick Brown, MD, PhD, and graduate student Chana Palmer to develop a gene chip that can perform a microbial census on complex communities and samples.

Mitzi Baker | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>