Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford gut check shows diversity of intestinal ecosystem

15.04.2005


The universe of microbes that lives in your stomach may be nearly as unique as your fingerprint, according to researchers at the Stanford University School of Medicine who have embarked on the early stages of exploring the intestinal ecosystem.

Using molecular techniques that detect all known types of microbes and borrowing statistical techniques from field ecology and population genetics, Paul Eckburg, MD, a postdoctoral scholar in infectious diseases and geographic medicine, conducted the most extensive study to date surveying the inhabitants of the lower digestive tract. In the three healthy subjects he studied, he found 395 unique bacterial species.

"The intestinal flora is critical to human physiology and a wide spectrum of disease, but the first step in studying this ecosystem is to figure out who is there and how the community census varies in time and space," said Eckburg, the lead author of the study published in this week’s online edition of Science Express. "But even with this large sequencing project, which produced orders of magnitude more sequence data than had been generated in the past, we are not completely there yet. This is just the tip of the iceberg."



Eckburg works with David Relman, MD, associate professor of medicine (infectious diseases and geographic medicine) and of microbiology and immunology. Relman’s lab at the Veteran Affairs Palo Alto Heath Care System specializes in microbial pathogen discovery and human microbial ecology, and in appreciating the roles played by microbes in human health and disease.

The paper by Eckburg and Relman is intended as the first of several studies looking at how microbial communities vary according to host, diet, geography, disease and other variables.

To distinguish individual bacteria among the hundreds of types in the samples, Eckburg took advantage of a technique that compares the genetic sequence of a molecule shared by bacteria and archaea. The molecule, 16S rRNA, plays a role in the translation of the genetic code and thus is critical to the organisms. However, small variations in the 16S rRNA gene sequences allow scientists to detect distinct bacteria.

For each of the three research subjects, the researchers analyzed samples from six different anatomical sites inside the large intestine as well as a stool sample.

Eckburg and his team determined more than 13,000 sequences of 16S rRNA. Most of what they identified included the usual suspects in the intestinal flora, but there were surprises. Nearly two-thirds of the bacteria they identified were novel, meaning that they had no genetic close neighbors in the existing databases that store sequence information about all known species.

"We thought we would find new ones, but it was a bit surprising to see such a large percentage that had remained unidentified," said Eckburg. "Despite this large effort, we are still not approaching the point of complete coverage of the intestinal community in any one individual - much less the complete coverage of all human intestinal communities." In contrast, the investigators found very limited diversity within the archaea, microbes that look a lot like bacteria but are genetically and biochemically as different from bacteria as bacteria are from humans.

The team also used the samples to examine how microbial communities differ among locations within the intestine as well as among different people.

"We were surprised at the degree to which an individual determines the particular picture of microbial diversity that we see," said Relman. "Variation between individuals had been suspected, but our data proved to be a dramatic confirmation of this belief."

An interesting corollary of this finding is that the ability to create a comprehensive census of the microbes living inside a person could have implications for human forensics. Unlike people’s genetic makeup, their endogenous microbial communities may indicate where they have been and what activities they have pursued in terms of travel, diet, antibiotic use and the like.

Relman emphasized that the study looked at only a limited number of individuals and examined only one genetic feature of the microbes, so there are many studies that must and will follow.

It took the team about a year to carry out this analysis of the microbial flora from three people. Although the process can now be done faster, Eckburg and Relman said they plan to complement this current approach with the use of microarray technology. The latter will allow them to analyze samples much more quickly. They have been working with biochemistry professor Patrick Brown, MD, PhD, and graduate student Chana Palmer to develop a gene chip that can perform a microbial census on complex communities and samples.

Mitzi Baker | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>