Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Umeå researchers have mapped the dams of the world

15.04.2005


More than half of the world’s large rivers are fragmented and regulated by dams. The largest and the most biologically and geographically diverse rivers are all affected. This is shown by a global study that is published in this week’s issue of the journal Science.



Behind the study are Christer Nilsson, Cathy Reidy and Mats Dynesius at Umeå University and Carmen Revenga at The Nature Conservancy in the U.S.

Humans have drastically changed many rivers by impoundments and diversions to meet the needs of water, energy and transportation. Such exploitation belongs among the most dramatic, deliberate impacts that humans have had on the natural environment. Many of the ecological effects of dams are relatively well known. Despite this fact, there has so far not been any overview of how this impact is distributed globally.


The Umeå based research group now presents an overview of how the world’s large rivers are regulated and fragmented by dams. The researchers examined the world’s rivers with a mean annual flow of at least 350 m3/s (e.g., larger than the Torne River in northern Sweden). The only regions for which accurate data have not been available are Indonesia and a small part of Malaysia.

The study shows that flow in 172 of the 292 largest rivers is regulated by dams. This number would be larger if irrigation were included. There are dams in the world’s 21 largest rivers and in the eight rivers that are biologically and geographically most diverse. The rivers in temperate forests and savannahs belong to the highest impact class, whereas many rivers in the tundra and in northern coniferous forests still remain free-flowing.

– When comparing continents, Europe has the highest proportion of strongly impacted rivers whereas Australia, including New Zealand and Papua New Guinea, has the largest proportion of free-flowing rivers. Overall, the degree of impact relates to population density and economic development. The few river systems that buck this trend are in places such as northern Canada, where dams were built in sparsely populated areas for the export of electricity and/or water, says Christer Nilsson.

Today, there are more than 45 000 dams over 15 meters high and that together can store more than 6500 km3 of water. This equals 15 percent of the annual freshwater runoff in the world. Over 300 dams are considered giants, over 150 meters high or storing more than 25 km3 of water. The recently built Three Gorges dam on the Yangtze River in China is the largest – 181 meters high and with a storage capacity of over 39 km3.

The study’s results will affect the assessment of how future climate changes and the constantly increasing use of water will impact the rivers’ ecosystems in different parts of the world.

The name of the article is Fragmentation and Flow Regulation of the World’s Large River Systems and is published in Science on April 15, 2005.

The research project has amongst others been funded by WWF Sweden, United Nations Educational, Scientific and Cultural Organization (UNESCO)/World Water Assessment Programme, United Nations Environment Programme (UNEP) and World Resources Institute. Christer Nilsson was last autumn funded by the Swedish Research Council to continue his study. His research group will now investigate how the dams have affected the vulnerability of freshwater fish.

Karin Wikman | alfa
Further information:
http://www.umu.se

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>