Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Shows Overfishing of Sharks Key Factor in Coral Reef Decline

12.04.2005


Unprecedented study describes sources contributing to decline of Caribbean reefs



Their position at the pinnacle of the marine food chain is legendary. Now, understanding sharks and their significance as top predators-and the consequences of human activity towards them-has taken on new importance through a new study by scientists in San Diego and Spain.

Jordi Bascompte and Carlos Melián of the Integrative Ecology Group, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, in Sevilla, Spain, and Enric Sala of Scripps Institution of Oceanography at the University of California, San Diego, developed an unprecedented model of a Caribbean marine ecosystem and details of its intricate predator-prey interactions. This food "web" covered 1,000 square kilometers to a depth of 100 meters and included some 250 species of marine organisms. The study, published in the April 12 edition of the Proceedings of the National Academy of Sciences, included an intricate network of more than 3,000 links between these species. The project was one of the largest and most detailed investigations of marine food webs and the first study to integrate food web structure, dynamics and conservation.


One of the most striking products of the study is a stark picture of human impacts on marine ecosystems and the consequences of targeted fishing. In the Caribbean, overfishing of sharks triggers a domino effect of changes in abundance that carries down to several fish species and contributes to the overall degradation of the reef ecosystem. Overfishing species randomly, the study shows, is not likely to cause these cascading effects.

"It appears that ecosystems such as Caribbean coral reefs need sharks to ensure the stability of the entire system," said Sala, deputy director of the Center for Marine Biodiversity and Conservation at Scripps.

When sharks are overfished, a cascade of effects can lead to a depletion of important grazers of plant life. This is because there are fewer sharks to feed on carnivorous fish such as grouper-causing an increase in their numbers and their ability to prey on parrotfishes. The removal of plant-eating animals such as parrotfishes has been partly responsible for the shift of Caribbean reefs from coral to algae dominated, the authors note. Thus overfishing of sharks may contribute further to the loss of resistance of coral reefs to multiple human disturbances.

"The community-wide impacts of fishing are stronger than expected because fishing preferentially targets species whose removal can destabilize the food web," the authors conclude in their report.

Because of their comprehensive approach in developing the intricate food web, the authors say their study and its results address more than individual species protection and speak to larger ecosystem protection issues. "The paper presents a community-wide approximation of conservation problems," said Bascompte. "We cannot asses all of the implications of overfishing by only looking at the target species or a few others. Species are embedded in a complex network of relationships and this network has a particular shape. This has large implications for the propagation of the consequences of overfishing through the whole food web."

Funding for the study was provided by the Spanish Ministry of Science and Technology and a grant from the History of Marine Animal Populations Program of the Census of Marine Life, which was sponsored by the Alfred P. Sloan Foundation.

Scripps Institution of Oceanography, at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and graduate training in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. The scientific scope of the institution has grown since its founding in 1903 to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,300, and annual expenditures of approximately $140 million from federal, state, and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>