Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Road salt routine may alter with warming

06.04.2005


Salting and sanding roads in the Northeast is a routine part of winter, but changes in climate patterns caused by global warming may alter the established policies on snow removal, incurring higher costs and influencing road safety, according to a Penn State geographer.



"I am working with the Consortium for Atlantic Regional Assessment on a case study in New York State’s Adirondack Park that investigates many aspects of climate change and land use change on local communities," says Tawan Banchuen, graduate student in geography. "My project focuses on climate change’s effect on winter road maintenance including environmental and economic impacts."

Adirondack Park is six million acres in Upstate New York, about the size of Vermont, occupied by 130,000 people year round, but visited by several million each year. The area encompasses Lake Placid, home of two Olympics, and many other small towns and is the largest protected area in the United States. Forty percent of the area is preserved, and 52 percent has been harvested and is currently managed.


Banchuen is currently looking at an area in the Park near Whiteface Mountain. He is investigating the use of salt and sand on both federal highways and local roads and tracking where the sand and salt end up. Banchuen would eventually like to model the climate change and consequent precipitation changes to see how it affects the amounts of salt and sand needed and how that affects the environment and economy.

"After the 1980 Lake Placid Olympics, the communities in the park promised to follow a bare pavement policy in winter," Banchuen told attendees at the American Association of Geographers meeting today (April 6) in Denver.

"Typically, state roads use mostly salt and local and town roads use sand," says Banchuen. "Salt is more expensive."

A previous study of four small streams in the park that feed into Rich Lake, found a significant elevation in chlorine downstream from the road. These elevated levels remained for four to six months after the last application.

Unfortunately, salt has many potential impacts on lakes. Increased salt concentrations can cause the lake to stratify into lighter and denser layers. While this often happens in the summer with temperature gradients, the salt could prevent the water from remixing in the fall. Circulation would stop or slow, and oxygen would not mix into the lower layers of the lake. With oxygen depletion come fish kills and releases of heavy metals in the sediment. Saltier water would also favor salt tolerant plants and animals and decrease the diversity in the lake.

Outside the lake, increased road salt can kill vegetation at roadsides. Road salt damages automobile undercarriages and bodies. Salt can also seep into the groundwater drinking supply.

Sand increases the load of suspended particles in streams and lakes. It also creates a clean-up problem on the sides of the road.

"Currently, in one county in the Adirondacks, half the road maintenance budget is spent on clearing the roads and making them safe," says Banchuen. "The rest can only repair half the damaged roads in the area."

A warmer climate does not necessarily mean less road salt use. Most researchers who look at warming agree that a warmer global climate will bring more precipitation to the area of the Adirondacks. The question is, will that precipitation fall as snow, mixed snow and sleet, sleet, freezing rain or rain?

"If the precipitation tends toward more sleet and freezing rain, then more salt and sand will be needed to make the roads safe," says Banchuen. "But, fewer days of snow might mean less ski traffic in the park and a depressed winter economy. Policy makers will need to adapt to the changes and make decisions that minimize the impacts of the changes."

Eventually the Penn State researcher will look at how storm tracks, population, elevation, traffic patterns and other variables influence the use of salt and sand and how that will affect the economy of the area.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>