Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An (ecological) origin of species for tropical reef fish

06.04.2005



Dealing a new blow to the dominant evolutionary paradigm, Luiz Rocha and colleagues from the Smithsonian Tropical Research Institute, Harvard University the University of Florida and the University of Hawaii, report coral reef fish from neighboring habitats may differ more from one another than from fish thousands of miles away. An ecological speciation model for coral reef organisms may spur the development of a more synthetic treatment of speciation on land and sea.

Coral reefs, like tropical forests, express an extreme of life’s capacity for variation. Yet high biodiversity in tropical seas foil evolutionists’ attempts to explain the splitting of one species into two on the basis of geographical barriers. According to standard evolutionary theory proposed by Dobzhansky and Mayr more than 50 years ago, mountain building, island formation, glaciation and other processes isolate populations within a species. Over evolutionary time, these populations mutate independently until individuals from distinct populations can no longer interbreed and become new species.

What explains the evolution of a huge number of closely related fish species on reefs in an open undersea world where currents constantly stir the waters, washing in fish or their larvae from afar, a world without well-defined geographical barriers? Rocha et al. took a close look at the genetics of one group of Western Atlantic tropical reef fishes (wrasses, genus Halichoeres) throughout their range and were surprised by what they found.



Rocha explains: "I was interested in the Amazon barrier. The Amazon and Orinoco’s freshwater and sediment discharge off of northeastern South America is so immense that it precludes coral reef formation from the mouth of the Amazon North to Trinidad and Tabago. This 2000 km gap is believed to be a strong barrier for corals and associated reef organisms."

"My idea was to test whether or not wrasses in the genus Halichoeres were genetically different North and South of this barrier. Since all of these species have similar abilities to disperse, I expected to find genetic differences that corresponded to the barrier in all of them, but, surprisingly, that wasn’t the case."

Mitochondrial DNA of adult fish and larvae from three locations in the Caribbean and from three locations in Brazil showed much clearer genetic differences within, rather than across, the two sides of the Amazon barrier. Genetically similar fish were found in ecologically similar habitats--even thousands of miles apart.

Wrasses collected only 360 km apart along the Brazilian coast were genetically more distinct than were fish collected 4200 km apart, from Fernando de Noronha island off of the Brazilian coast and St. Croix in the Caribbean.

The fact that evolutionary partitions correspond more closely to habitat type, rather than to conventional geographical barriers, indicates that local speciation events may overcome the homogenizing effect of migration in the ocean, vindicating Darwin’s original ideas about the importance of ecological speciation in biodiversity evolution.

Beth King | EurekAlert!
Further information:
http://www.si.edu
http://www.luizrocha.com/gallery9.htm
http://www.stri.org

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>