Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An (ecological) origin of species for tropical reef fish

06.04.2005



Dealing a new blow to the dominant evolutionary paradigm, Luiz Rocha and colleagues from the Smithsonian Tropical Research Institute, Harvard University the University of Florida and the University of Hawaii, report coral reef fish from neighboring habitats may differ more from one another than from fish thousands of miles away. An ecological speciation model for coral reef organisms may spur the development of a more synthetic treatment of speciation on land and sea.

Coral reefs, like tropical forests, express an extreme of life’s capacity for variation. Yet high biodiversity in tropical seas foil evolutionists’ attempts to explain the splitting of one species into two on the basis of geographical barriers. According to standard evolutionary theory proposed by Dobzhansky and Mayr more than 50 years ago, mountain building, island formation, glaciation and other processes isolate populations within a species. Over evolutionary time, these populations mutate independently until individuals from distinct populations can no longer interbreed and become new species.

What explains the evolution of a huge number of closely related fish species on reefs in an open undersea world where currents constantly stir the waters, washing in fish or their larvae from afar, a world without well-defined geographical barriers? Rocha et al. took a close look at the genetics of one group of Western Atlantic tropical reef fishes (wrasses, genus Halichoeres) throughout their range and were surprised by what they found.



Rocha explains: "I was interested in the Amazon barrier. The Amazon and Orinoco’s freshwater and sediment discharge off of northeastern South America is so immense that it precludes coral reef formation from the mouth of the Amazon North to Trinidad and Tabago. This 2000 km gap is believed to be a strong barrier for corals and associated reef organisms."

"My idea was to test whether or not wrasses in the genus Halichoeres were genetically different North and South of this barrier. Since all of these species have similar abilities to disperse, I expected to find genetic differences that corresponded to the barrier in all of them, but, surprisingly, that wasn’t the case."

Mitochondrial DNA of adult fish and larvae from three locations in the Caribbean and from three locations in Brazil showed much clearer genetic differences within, rather than across, the two sides of the Amazon barrier. Genetically similar fish were found in ecologically similar habitats--even thousands of miles apart.

Wrasses collected only 360 km apart along the Brazilian coast were genetically more distinct than were fish collected 4200 km apart, from Fernando de Noronha island off of the Brazilian coast and St. Croix in the Caribbean.

The fact that evolutionary partitions correspond more closely to habitat type, rather than to conventional geographical barriers, indicates that local speciation events may overcome the homogenizing effect of migration in the ocean, vindicating Darwin’s original ideas about the importance of ecological speciation in biodiversity evolution.

Beth King | EurekAlert!
Further information:
http://www.si.edu
http://www.luizrocha.com/gallery9.htm
http://www.stri.org

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>