Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery on the Hudson

06.04.2005


Carbon exists in many forms in the air, soil, and water, and is an integral part of most living organisms. In a recent study, Stuart Findlay (Institute of Ecosystem Studies, Millbrook, New York) discovered changes in the amount of carbon in the Hudson River. Exactly why the amounts changed, and what’s causing these changes, remains a mystery.

In "Increased carbon transport in the Hudson River: unexpected consequence of nitrogen deposition?" published in the April issue of Frontiers in Ecology and the Environment, Findlay explores what may be driving this phenomenon.

Most large rivers contain dissolved organic carbon (DOC) in fair quantities, but recent tests have shown a doubling of the amount of DOC accumulating in the Hudson River over the past fifteen years. Soggy peatlands, wetlands, or increased agriculture could all lead to increases in the carbon levels. Some areas have shown increased DOC after nitrogen fertilization of forests. Yet activity along the Hudson River, including agricultural use, has declined over the years.



According to the paper, "temperature, water yield, and land cover have not changed in ways that would make these viable causes for the altered DOC."

Findlay proposes two possible suspects: either the composition of materials flowing into the Hudson has changed or the bacteria that normally process carbon are not metabolizing some of the carbon material entering the river. The second possibility, that the metabolism of the bacteria in the river has changed, would result in higher levels of DOC flowing downstream to the freshwater tidal flats.

According to Findlay, if the bacteria are bypassing the material flowing into the river, then downstream waters would receive larger amounts of DOC. This process would add to oxygen demand, increasing the river’s susceptibility to eutrophication-driven problems of hypoxia, such as regularly occurs in the Gulf of Mexico.

Looking at current evidence, if carbon degradation, or the amount of carbon processed by bacteria, had not changed over the past fifteen years, possibly 20 percent less DOC would flow from the upper to the lower regions of the Hudson river.

There is also evidence that the amount of carbon flowing into the Hudson has changed. Other studies have found that increased nitrogen, whether from sources such as fertilizer or acid rain, alter the amount of carbon flowing into small streams and lakes.

These unexpected interactions point to possible larger changes across ecosystems, suggesting that DOC may be a sensitive indicator of changing ecosystems.

Annie Drinkard | EurekAlert!
Further information:
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>