Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural clean-up for oil-spill soils

06.04.2005


Oil spills from tankers or simply your local garage could soon be cleaned up using specially-selected bacteria, according to research presented today (Wednesday, 06 April 2005) at the Society for General Microbiology’s 156th Meeting at Heriot-Watt University, Edinburgh.



Millions of gallons of crude oil and its derivates used by the plastics and chemical industries are transported vast distances around the world every day, and inevitably some of it gets spilled. Scientists from University College Dublin are studying how natural bacteria can be used to tackle these pollutants.

"We looked at soil exposed to one of the main components of diesel fuel to see whether the hundreds of different micro-organisms in the site could break down the hydrocarbon, and to find out which bacteria in the natural community were involved," says John Reynolds from the Department of Industrial Microbiology at University College Dublin. “Although we know that microbes do degrade these chemicals, we know very little about how this happens in real ecosystems. This has been because until recently, methods were not available to really analyse what happens to microbial populations actually in the soil.”


"Each gram of soil has hundreds of different species of microbes in it,” explains John Reynolds. “Using advanced DNA profiling we showed that there was a big change in the balance of different bacteria in the community during the process, which allowed us to pin-point those bugs which actively respond to the hydrocarbon.”

Conventional clean-up procedures such as incineration, used when crude oil or one of its hundreds of carbon based components is spilled, are expensive and environmentally damaging. The work by the Dublin based scientists showed that some of the constituents of diesel oil are toxic to some bacteria, but others can use it as a food, breaking it down in the process, and that then different bacteria could use the results to further destroy the pollutants.

"Potentially there are enormous benefits through understanding how natural microbial populations can be manipulated to break down pollutants," says John Reynolds. “Simply adding a degrading bug to polluted soil doesn’t work as a clean-up method. It’s the communities that matter. This information should allow us to choose a set of specific bacteria and rationally design a remediation and rescue package for any oil contaminated site in the real world.”

Faye Jones | alfa
Further information:
http://www.sgm.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>