Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Roundup®highly lethal to amphibians

04.04.2005


The herbicide Roundup® is widely used to eradicate weeds. But a study published today by a University of Pittsburgh researcher finds that the chemical may be eradicating much more than that.

Pitt assistant professor of biology Rick Relyea found that Roundup®, the second most commonly applied herbicide in the United States, is "extremely lethal" to amphibians. This field experiment is one of the most extensive studies on the effects of pesticides on nontarget organisms in a natural setting, and the results may provide a key link to global amphibian declines.

In a paper titled "The Impact of Insecticides and Herbicides on the Biodiversity and Productivity of Aquatic Communities," published in the journal Ecological Applications, Relyea examined how a pond’s entire community--25 species, including crustaceans, insects, snails, and tadpoles--responded to the addition of the manufacturers’ recommended doses of two insecticides--Sevin® (carbaryl) and malathion--and two herbicides--Roundup® (glyphosate) and 2,4-D.



Relyea found that Roundup® caused a 70 percent decline in amphibian biodiversity and an 86 percent decline in the total mass of tadpoles. Leopard frog tadpoles and gray tree frog tadpoles were completely eliminated and wood frog tadpoles and toad tadpoles were nearly eliminated. One species of frog, spring peepers, was unaffected.

"The most shocking insight coming out of this was that Roundup®, something designed to kill plants, was extremely lethal to amphibians," said Relyea, who conducted the research at Pitt’s Pymatuning Laboratory of Ecology. "We added Roundup®, and the next day we looked in the tanks and there were dead tadpoles all over the bottom."

Relyea initially conducted the experiment to see whether the Roundup® would have an indirect effect on the frogs by killing their food source, the algae. However, he found that Roundup®, although an herbicide, actually increased the amount of algae in the pond because it killed most of the frogs.

"It’s like killing all the cows in a field and seeing that the field has more grass in it--not because you made the grass grow better, but because you killed everything that eats grass," he said.

Previous research had found that the lethal ingredient in Roundup® was not the herbicide itself, glyphosate, but rather the surfactant, or detergent, that allows the herbicide to penetrate the waxy surfaces of plants. In Roundup®, that surfactant is a chemical called polyethoxylated tallowamine. Other herbicides have less dangerous surfactants: For example, Relyea’s study found that 2,4-D had no effect on tadpoles.

"We’ve repeated the experiment, so we’re confident that this is, in fact, a repeatable result that we see," said Relyea. "It’s fair to say that nobody would have guessed Roundup® was going to be so lethal to amphibians."

Karen Hoffman | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>