Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Filter That Makes Viruses Adhere

29.03.2005


Siberian researchers have developed a biologically active sorbent of a new generation. The sorbent provides for the 100-percent efficient water purification from microorganisms and bacteriophages. Microbiological researches were performed with partial support of the U.S. Civilian Research and Development Foundation (CRDF) grant.



Specialists of the Tomsk Polytechnical University and Scientific Research Institute “Microorganism Culture Collection” (VECTOR State Research Center for Virology and Biotechnology) have developed a biologically active sorbent of a new generation based on cotton pulp, modified 1-percent silica slip containing activated alumina. The sorbent provides for the 100-percent efficient water purification from microorganisms and bacteriophages, it can be applied in a wide range of conditions and possesses sufficient durability and longevity.

Water and aqueous solutions are overfilled with pathogens, viruses and toxins, which so far threaten life and health of people, regardless of undertaken actions. Water purification via filtering is ineffective and underproductive, as fine filters with low throughput capacity have to be utilized. Contemporary purification methods are based on the fact that the majority of bacteria and viruses are negatively charged, therefore they can be captured by a macroporous material possessing positive electrokinetic potential. As a result of the process called electrokinetic capturing, small particles would simply stick to filter material.


Since the 70s of the last centur, researchers of different countries have developed several kinds of cation sorbents. Cuno company set up flow-production of a filter material based on diatomite soil under the “Zeta Plus” trade mark. Other foreign sorbents consist of inorganic and organic fiber, the surface of which is covered with needle-shaped boehmite (aluminium hydroxide) nanoparticles.

Filter materials developed by the Russian researchers also contain aluminium oxide and they were created with application of nanotechnology. Unfortunately, all these sorbents are rather expensive and fragile, they can be used only in neutral and acid medium. Therefore, Siberian microbiologists took up to develop more durable, inexpensive and undemanding filters.

To get the sorbent, the researchers made use of low-cost ecologically safe components. The sorbent is based on cotton pulp, which is covered by big nonspherical particles of aluminium oxide (boehmite). To this end, wetted cellulose was mixed with aluminum powder. However, large particles of aluminium do not get water-oxidized in ordinary conditions. To turn entire aluminium powder into oxide, the sorbent developers had to perform activation with alternating sinusoidal power current (50 Hz).

Tests have proved that the sorbent does not lose durability even after a two-day soaking in distilled water and it is capable of functioning in a wide range of ðÍ values, including alkaline medium. The sorbent’s throughput capacity reaches 15000 litre per square meter per hour. The material fully keeps back the test biological object - bacteriophage MS-2, i.e., it exceeds efficiency of Cuno’s Zeta Plus 50S filter, which catches only 99 percent of objects.

Thus, Siberian researchers have created an excellent sorbent of low-cost ecologically safe components by applying simple technologies. In their opinion, the sorbent may be widely applied in medicine, veterinary science, food industry and for purification of water, solutions and outbursts of plants related to utilization of microbiological processes.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>