Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change inevitable in 21st century

18.03.2005


Sea level rise to outpace temperature increase



Even if all greenhouse gases had been stabilized in the year 2000, we would still be committed to a warmer Earth and greater sea level rise in the present century, according to a new study by a team of climate modelers at the National Center for Atmospheric Research (NCAR). The findings are published in this week’s issue of the journal Science.
The modeling study quantifies the relative rates of sea level rise and global temperature increase that we are already committed to in the 21st century. Even if no more greenhouse gases were added to the atmosphere, globally averaged surface air temperatures would rise about a half degree Celsius (one degree Fahrenheit) and global sea levels would rise another 11 centimeters (4 inches) from thermal expansion alone by 2100.

"Many people don’t realize we are committed right now to a significant amount of global warming and sea level rise because of the greenhouse gases we have already put into the atmosphere," says lead author Gerald Meehl. "Even if we stabilize greenhouse gas concentrations, the climate will continue to warm, and there will be proportionately even more sea level rise. The longer we wait, the more climate change we are committed to in the future."



The half-degree temperature rise is similar to that observed at the end of the 20th century, but the projected sea level rise is more than twice the 3-inch (5-centimeter) rise that occurred during the latter half of the previous century. These numbers do not take into account fresh water from melting ice sheets and glaciers, which could at least double the sea level rise caused by thermal expansion alone.

The North Atlantic thermohaline circulation, which currently warms Europe by transporting heat from the tropics, weakens in the models. Even so, Europe heats up with the rest of the planet because of the overwhelming effect of greenhouse gases.

Though temperature rise shows signs of leveling off 100 years after stabilization in the study, ocean waters continue to warm and expand, causing global sea level to rise unabated.

The paper concludes with a cogent statement by Meehl: "With the ongoing increase in concentrations of GHGs [greenhouse gases], every day we commit to more climate change in the future. When and how we stabilize concentrations will dictate, on the time scale of a century or so, how much more warming we will experience. But we are already committed to ongoing large sea level rise, even if concentrations of GHGs could be stabilized."

The inevitability of the climate changes described in the study is the result of thermal inertia, mainly from the oceans, and the long lifetime of carbon dioxide and other greenhouse gases in the atmosphere. Thermal inertia refers to the process by which water heats and cools more slowly than air because it is denser than air.

The new study is the first to quantify future committed climate change using "coupled" global three-dimensional climate models. Coupled models link major components of Earth’s climate in ways that allow them to interact with each other. Meehl and his NCAR colleagues ran the same scenario a number of times and averaged the results to create ensemble simulations from each of two global climate models. Then they compared the results from each model.

The scientists also compared possible climate scenarios in the two models during the 21st century in which greenhouse gases continue to build in the atmosphere at low, moderate, or high rates. The worst-case scenario projects an average temperature rise of 3.5°C (6.3°F) and sea level rise from thermal expansion of 30 centimeters (12 inches) by 2100. All scenarios analyzed in the study will be assessed by international teams of scientists for the next report by the Intergovernmental Panel on Climate Change, due out in 2007.

The NCAR team used the Parallel Climate Model (PCM), developed by NCAR and the Department of Energy, and the new Community Climate System Model (Version 3). The CCSM3 was developed at NCAR with input from university and federal climate scientists around the country and principal funding from the National Science Foundation (NCAR’s primary sponsor) and the Department of Energy. The CCSM3 shows slightly higher temperature rise and sea level rise from thermal expansion and greater weakening of the thermohaline circulation in the North Atlantic. Otherwise, the results from the two models are similar. The models were run on supercomputers at NCAR and several DOE labs and on the Earth Simulator in Japan.

Opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Anatta | EurekAlert!
Further information:
http://www.ucar.edu
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>