Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oceans more vulnerable to agricultural runoff than previously thought

10.03.2005


Researchers have long suspected that fertilizer runoff from big farms can trigger sudden explosions of marine algae capable of disrupting ocean ecosystems and even producing "dead zones" in the sea. Now a new study by Stanford University scientists presents the first direct evidence linking large-scale coastal farming to massive algal blooms in the sea.




Writing in the March 10 issue of the journal Nature, the authors conclude that some highly productive regions of the ocean are much more vulnerable to agricultural runoff than was previously assumed.

The study is based on satellite imagery of Mexico’s Gulf of California, also known as the Sea of Cortez-a narrow, 700-mile-long stretch of the Pacific Ocean that separates the Mexican mainland from the Baja California Peninsula. The area is a hotspot of marine biodiversity and one of Mexico’s most important commercial fishing centers.


"Biological productivity in most of the world’s oceans is controlled by the supply of nutrients to the surface water," wrote the authors, who are all affiliated with Stanford’s School of Earth Sciences. "The Gulf of California contains some of the highest nutrient concentrations in the oceans and sustains highly elevated rates of biological productivity."

In the gulf, wind-driven upwellings regularly bring nitrogen and other nutrients from the seafloor to the surface, stimulating the rapid reproduction and growth of microscopic algae called phytoplankton. These algal blooms are natural events that benefit life in the gulf by generating tons of phytoplankton-a major source of food for larger organisms.

But some phytoplankton species produce harmful blooms, known as red or brown tides, which release toxins in the water that can poison mollusks and fish. Excessively large blooms can also overwhelm a marine ecosystem by depleting oxygen in the water. Scientists suspect that many harmful blooms are artificially fueled by fertilizer runoff from farms, which dump tons of excess nitrogen into rivers that eventually flow into the sea.

"There has been an international effort to try to understand the productivity of the oceans and their potential vulnerability to nitrogen," said Pamela A. Matson, the dean of the School of Earth Sciences and co-author of the Nature study. "A map has been developed showing special regions in the world where nitrogen is low relative to other nutrients that phytoplankton need to grow, and the Gulf of California is one of those regions. Our study is the first to show that the addition of human-caused nutrients in these special areas causes extra blooms of phytoplankton."

Yaqui Valley agriculture

To assess the impact of agricultural runoff on the gulf, the Stanford scientists turned their attention to one of Mexico’s most productive coastal farming regions-the Yaqui River Valley, which drains into the gulf.

"The Yaqui Valley agricultural area is 556,000 acres [225,000 hectares] of irrigated wheat," Matson said. "The entire valley is irrigated and fertilized in very short windows of time during a six-month cycle. The excess water from irrigation runs off through streams and channels into the estuaries and then out to sea."

Matson and her colleagues wondered if each fertilization and irrigation event would trigger a noticeable phytoplankton bloom near the mouth of the Yaqui River, which is located on the mainland side of the gulf. To find out, the researchers analyzed a series of images from an orbiting NASA satellite called SeaWiFS, which is equipped with special light-sensitive instruments that can detect phytoplankton floating near the surface of the sea.

"These instruments measure the level of greenness in the water," explained Kevin Arrigo, associate professor of geophysics. "The greener the water, the more phytoplankton there are."

Dramatic results

Stanford doctoral candidate J. Michael Beman carefully analyzed dozens of SeaWiFS images taken over the gulf from 1998 through 2002. The results were dramatic.

"I looked at five years of satellite data," said Beman, lead author of the study. "There were roughly four irrigation events per year, and right after each one, you’d see a bloom appear within a matter of days."

Each bloom was enormous, he said, covering from 19 to 223 square miles (50 to 577 square kilometers) of the gulf and lasting several days. "Sometimes eddies actually pulled the plumes across the gulf, from the mainland side all the way to the Baja Peninsula," Beman added.

"Mike found that immediately following each one-week window in which much of the valley was irrigated, there was a response in the ocean off the coast of the Yaqui Valley," Matson explained.

"We were quite surprised," Arrigo added, noting that the Nature paper marks the first time that scientists have documented a "one-to-one correspondence between an irrigation event and a massive algal bloom."

Red tides and dead zones

According to the researchers, artificially induced algal blooms could have major impacts on recreational and commercial fishing, major industries in the gulf. Red tides, for example, can cause outbreaks of life-threatening diseases, such as paralytic shellfish poisoning, which can shut down mussel and clam harvesting for long periods of time.

Another concern is hypoxia, or oxygen depletion, caused by excessive algae growth. As the algal mass sinks, it is consumed by bacteria, which use up most of the oxygen in the water as they multiply. The result is an oxygen-depleted dead zone at the bottom of the sea where few creatures can survive. A massive dead zone appears every summer in the Gulf of Mexico off the coast of Louisiana and Texas. Scientists believe that agricultural runoff from the Mississippi River plays a pivotal role in creating this annual dead zone, which measured 8,500 square miles (22,000 square kilometers) in 2002-an area bigger than the state of Massachusetts.

"In the Gulf of Mexico, there’s the possibility that hypoxia could occur at a local scale, which could be devastating to the shrimp and shellfish industries," Matson said. "Shrimp fisheries are very important economically, and they’re already under a lot of stress from overfishing and aquaculture. It is possible that agricultural runoff could cause additional stress if it does lead to toxic blooms or hypoxia."

She and her colleagues plan to conduct follow-up studies to assess the ecological impact of runoff events in the Yaqui Valley. They also expressed concern about the impact of large farming operations in other vulnerable subtropical and tropical oceans, including Southeast Asia, West Africa, the Arabian Sea and the Bay of Bengal. "Now we can go back and predict which areas of the world will be vulnerable in the same way the Gulf of California is to nutrients coming off the land," Matson said.

"Inarguably, the effects of marine nitrogen pollution are becoming extremely widespread and severe as a consequence of the global expansion of industrialized agriculture and the intensification of certain practices," the authors wrote. "Nitrogen-based fertilizers are the primary source of nitrogen pollution, and their use is predicted to double or triple over the next 50 years."

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>