Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Report highlights diseases from the environment

07.03.2005


While many infectious diseases are caused by human-to-human transmission, others are caused by microorganisms that exist in the outside environment. Scientists from a variety of fields, including medicine and the environment, must work together to address the challenges posed by these environmental pathogens, according to a new report, From Outside to Inside: Environmental Microorganisms as Human Pathogens, released today by the American Academy of Microbiology.



"The key difference between environmental pathogens and other human pathogens is their ability to survive and thrive outside the host. Their widespread occurrence in the environment makes them difficult to monitor and control," says Gerard Cangelosi of the Seattle Biomedical Research Institute at the University of Washington, one of the authors of the report. "The fields of medical and environmental microbiology need to be better integrated to stimulate the type of work that is required to combat environmental pathogens effectively, and the development and improvement of surveillance and reporting strategies should be a top priority."

Environmental pathogens are defined as microorganisms that normally spend a substantial part of their lifecycle outside human hosts, but when introduced to humans cause disease with measurable frequency. They are carried in the water, soil, air, food and other parts of the environment and can affect almost every individual on the planet. Some examples of environmental pathogens include Legionella pneumophila (the cause of Legionnaires disease, often found in air conditioning systems), West Nile virus, and Cryptosporidium parvum (a parasite that can be found in food, drinking water and recreational waters).


In addition to better integration of medical and environmental research, the report recommends more effective monitoring of pathogens in the environment to allow researchers to better understand the incidence and persistence of pathogens in areas that are considered to be at risk for harboring these organisms. Multidisciplinary research must also be fostered to better predict how changes in the environment may affect the frequency of environmental diseases.

"These threats to human health can only be assessed in a comprehensive multidisciplinary context in which ecology, epidemiology, and emerging areas in environmental engineering and microbiology are integrated. This combined approach can yield immediate and long-term health benefits by mitigating established environmental risks, identifying risky situations for disease emerging and finding the causes of diseases of unknown etiology," says Cangelosi.

The report is the result of a colloquium convened by the Academy in February 2004 to discuss environmental pathogens and the current state of research on these organisms. Scientists with expertise in infectious diseases, food microbiology, bacteriology, molecular biology, microbial ecology, pathogenic mycology and other areas in the microbiological sciences participated. Participants considered the knowledge gaps related to the incidence and epidemiology of environmental infectious diseases, dynamics of human pathogens in the environment, ways to alleviate environmental infectious diseases, research needs in the field and education and communication issues.

Angelo R. Bouselli | EurekAlert!
Further information:
http://www.asm.org
http://www.asm.org/Academy/index.asp?bid=2093

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>