Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could microbes solve Russia’s chemical weapons conundrum?

07.03.2005


One of nature’s most versatile microorganisms – a bacterium called Pseudomonas putida – could help mop up the toxic by-products caused by the destruction of the chemical weapon mustard, write Russian researchers in Journal of Chemical Technology and Biotechnology this month.



At 40’000 tonnes, Russia houses the world’s largest stockpile of chemical warfare agents (CWAs). The country faces a race against time to dispose of the stockpile by 2007, in accordance with the Chemical Weapons Convention (CWC). This disposal must be achieved in an ecologically-sound manner.

Dr Inna Ermakova and colleagues from the GK Skryabin Institute of Biochemistry and Physiology of Microorganisms at the Russian Academy of Sciences in Puschino examined the possibility of using P putida to transform the toxic by-products contained in reaction masses (RMs) that arise when mustard is destroyed by chemical detoxification (a procedure developed in response to the CWC).


Currently, incineration or a process called bitumenisation are employed to deal with RMs, however both methods are highly expensive and pose environmental risks.

Mustard is a blistering agent that was first used in World War I. Found in both liquid and aerosol form (mustard gas), it can cause severe burns to the skin, and severe damage to the respiratory system and internal organs if ingested or inhaled. It accounts for around 2% of Russia’s CWA stockpile.

Around 60% of the mustard RM consists of derivatives of a toxic compound called 1,4-perhydrothiazine (PHT).

Ermakova’s research team grew P putida in cultures containing mustard RM. They then monitored the levels of PHT derivatives in the cultures until the bacteria stopped growing, using monoethanolamine (MEA) and ethylene glycol (EG) – both residual components of the initial detoxification process that are present in the RM – for growth.

The results showed that the concentrations of each PHT derivative decreased significantly when P putida was grown in the presence of these carbon sources. By the time the bacteria had stopped growing, the concentration of the PHT derivatives had decreased by 50-55%. When further MEA and EG were added, the overall PHT decrease was 83%. In the absence of a carbon source other than PHT, the PHT levels remained constant. When no bacteria were present, the PHT concentrations also remained constant.

The authors conclude that the 1,4-perhydrothiazines undergo transformation by the microbial cells when a growth substrate (MEA/EG) is present. However as the cells did not grow in the presence of PHT alone, the authors conclude that the bacteria cannot use them for growth.

The group hopes that the bacterial strain can be used in the context of plant-microbial associations to create a new generation of biotechnologies for remediation of soils contaminated by CWAs or products of their detoxification. “Bioutilization of organic compounds of reaction masses is a biotechnological method that provides maximum environmental safety, since the pollutants are naturally degraded to innocuous products such as carbon dioxide and water, as well as microbial biomass,” said Dr Ermakova.

Jacqueline Ali | alfa
Further information:
http://www3.interscience.wiley.com/cgi-bin/jhome/2517
http://www.soci.org

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

NASA team finds noxious ice cloud on saturn's moon titan

19.10.2017 | Physics and Astronomy

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>