Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could microbes solve Russia’s chemical weapons conundrum?

07.03.2005


One of nature’s most versatile microorganisms – a bacterium called Pseudomonas putida – could help mop up the toxic by-products caused by the destruction of the chemical weapon mustard, write Russian researchers in Journal of Chemical Technology and Biotechnology this month.



At 40’000 tonnes, Russia houses the world’s largest stockpile of chemical warfare agents (CWAs). The country faces a race against time to dispose of the stockpile by 2007, in accordance with the Chemical Weapons Convention (CWC). This disposal must be achieved in an ecologically-sound manner.

Dr Inna Ermakova and colleagues from the GK Skryabin Institute of Biochemistry and Physiology of Microorganisms at the Russian Academy of Sciences in Puschino examined the possibility of using P putida to transform the toxic by-products contained in reaction masses (RMs) that arise when mustard is destroyed by chemical detoxification (a procedure developed in response to the CWC).


Currently, incineration or a process called bitumenisation are employed to deal with RMs, however both methods are highly expensive and pose environmental risks.

Mustard is a blistering agent that was first used in World War I. Found in both liquid and aerosol form (mustard gas), it can cause severe burns to the skin, and severe damage to the respiratory system and internal organs if ingested or inhaled. It accounts for around 2% of Russia’s CWA stockpile.

Around 60% of the mustard RM consists of derivatives of a toxic compound called 1,4-perhydrothiazine (PHT).

Ermakova’s research team grew P putida in cultures containing mustard RM. They then monitored the levels of PHT derivatives in the cultures until the bacteria stopped growing, using monoethanolamine (MEA) and ethylene glycol (EG) – both residual components of the initial detoxification process that are present in the RM – for growth.

The results showed that the concentrations of each PHT derivative decreased significantly when P putida was grown in the presence of these carbon sources. By the time the bacteria had stopped growing, the concentration of the PHT derivatives had decreased by 50-55%. When further MEA and EG were added, the overall PHT decrease was 83%. In the absence of a carbon source other than PHT, the PHT levels remained constant. When no bacteria were present, the PHT concentrations also remained constant.

The authors conclude that the 1,4-perhydrothiazines undergo transformation by the microbial cells when a growth substrate (MEA/EG) is present. However as the cells did not grow in the presence of PHT alone, the authors conclude that the bacteria cannot use them for growth.

The group hopes that the bacterial strain can be used in the context of plant-microbial associations to create a new generation of biotechnologies for remediation of soils contaminated by CWAs or products of their detoxification. “Bioutilization of organic compounds of reaction masses is a biotechnological method that provides maximum environmental safety, since the pollutants are naturally degraded to innocuous products such as carbon dioxide and water, as well as microbial biomass,” said Dr Ermakova.

Jacqueline Ali | alfa
Further information:
http://www3.interscience.wiley.com/cgi-bin/jhome/2517
http://www.soci.org

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>