Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Internet viruses help ecologists control invasive species

02.03.2005


Studying how computer viruses spread through the internet is helping ecologists to prevent invasions of non-native species. New research published today in the British Ecological Society’s Journal of Applied Ecology, describes the use of network theory to predict how the spiny water flea - a native of Russia - will spread through the Canadian lake system.



Ecologists Jim Muirhead and Professor Hugh MacIsaac of the University of Windsor, Ontario have been studying the spread of the spiny water flea, Bythotrephes longimanus, through Canadian lakes. Using network theory, they built up a picture of the lakes as nodes in a network connected by human traffic, including boat trailers and anglers. Like internet viruses, which spread fastest when they attack the most widely-used email programmes, Muirhead and MacIsaac examined patterns of human vector movement to see whether some invaded systems have the potential to develop into invasion hubs.

According to Muirhead and MacIsaac: "Some lakes invaded by the spiny water flea may serve as invasion hubs if departing boaters and anglers travel to large numbers of non-invaded destination lakes." They found that two of the five lakes they studied, Lake Simcoe and Lake Kashagwigamog, are likely to develop as invasion hubs because most boaters and anglers leaving these lakes travel to lakes that are still free from the spiny water flea.


Earlier work by the pair found that another lake in the network, Lake Muskoka in central Ontario, has served as the hub from which 39 other lakes have become infected since 1989. "It quickly developed into a regional hub for two reasons. First, all of its outbound traffic was to non-invaded lakes and second, the total amount of traffic leaving this source was high," they say.

The findings are important because they allow the limited resources available to control invasive species to be targeted at points on the network where they will have most impact. "Outbound vector traffic from hubs with large flows to non-invaded destinations should be targeted for management efforts to restrict the transportation of propagules across the network and to reduce the rate at which non-indigenous species disperse to novel sites," Muirhead and MacIsaac conclude.

The spiny water flea was first found in Lake Ontario in 1982 and by 2003 it had invaded at least 57 inland lakes and lake systems in Canada. Its spread has been facilitated because it can produce resting eggs able to survive adverse environmental conditions (such as drying out or being eaten by fish), and because humans transport the eggs on their fishing gear and pleasure boats.

Professor Norman Yan of Ontario’s York University has demonstrated that predation by the spiny water flea causes an average loss of three zooplankton species. Thus, as the species spreads, it could cause loss of thousands of populations of zooplankton species in Ontario alone.

Lynne Miller | EurekAlert!
Further information:
http://www.blackwellpublishing.com

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>