Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Post-tsunami Thailand yields lessons for coastal construction


Engineering experts see how buildings and materials fared against walls of water

An inspection of Thai villages and ports struck by tsunami waves has uncovered some engineering lessons that might reduce casualties and destruction in future oceanic upheavals, a Johns Hopkins researcher said.

Robert A. Dalrymple, an internationally recognized expert on water waves and coastal engineering, was part of a nine-member team that recently toured southern Thailand, examining landscape and structural damage in areas that had been battered by waves up to 10 meters (more than 30 feet) high. The research trip to Thailand, along with similar expeditions to Sri Lanka and India, was organized and funded by the American Society of Civil Engineers, in cooperation with the Institution of Civil Engineers.

An earthquake in the Indian Ocean triggered the Dec. 26 tsunami, which killed more than 200,000 people in 11 nations and caused immense property damage. "The force of the fast-moving waves on structures was tremendous," said Dalrymple, who is the Willard and Lillian Hackerman Professor of Civil Engineering at Johns Hopkins. "We wanted to see which buildings and other structures held up against the waves–and which didn’t."

The American Society of Civil Engineers is preparing a detailed technical report. But Dalrymple said team and personal observations in post-tsunami Thailand led him to compile a list of general lessons for builders in coastal areas where future tsunamis may occur:

Elevated structures survive better.

The waves were powerful enough to smash through a building’s ocean-facing wall and break out the opposite side, and high enough to inundate a second-story level. Elevated buildings that allowed the moving water to pass through the lower level with little interference fared better than those with solid first-floor walls. Taller buildings that allowed people to reach heights above the wave’s crest helped reduce casualties.

Materials matter.

Reinforced concrete structures were more likely to survive the wave forces. In general, masonry (brick) and wooden structures did not fare as well.

Orientation is important.

Walls facing the ocean, allowing perpendicular impact from the waves, sustained more damage. Walls oriented in the direction of the flow sustained less.

Strong foundations are necessary.

In addition, landscaping or other features can protect the foundations against scouring, which is soil erosion caused by the moving water. Seawalls can be a very effective way to reduce wave damage. The structures must be continuous, however, with no gaps for pedestrian crossings. Also, such structures should not slope inland, allowing waves to slide up and over the walls like a skier.

Debris in the flow is hazardous. Many tsunami victims were injured or killed by debris pushed along by the powerful waves. Debris can be minimized if vehicles are parked and heavy items stored on the inland side of buildings. Ports are particularly vulnerable to tsunami waves. Boats and piers in a harbor hit by a tsunami have little protection.

Beaches in Thailand recover rapidly. The ASCE researchers discovered that within weeks of the disaster, natural ocean forces had returned the sandy beaches nearly to their pre-tsunami condition. The beaches have reopened, Dalrymple said, and Thais are encouraging tourists to return.

Dalrymple said several questions raised during the trip require further research. These include why the height of the tsunami varied dramatically along the coast of Thailand and how engineers can construct a mathematical model of wave forces as they pass through coastal structures.

Color Image of Robert Dalrymple available; contact Phil Sneiderman.

Related Links: Robert A. Dalrymple’s Web Site:
Johns Hopkins Department of Civil Engineering:
American Society of Civil Engineers:

Phil Sneiderman | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>