Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ecological destruction fuels emerging diseases

22.02.2005


The destruction of habitat by human activity and the extinction of species around the world is more than a looming environmental catastrophe, warns a Canadian zoologist. This ecological damage also endangers human health by turning parasites into "evolutionary land mines."



Dr. Daniel (Dan) Brooks, a parasitologist at the University of Toronto, says the decline of global biodiversity is linked to the emergence of new human and wildlife diseases such as West Nile Virus and avian flu.

"The biodiversity crisis is not just about extinctions," says Dr. Brooks, whose pioneering parasite systematics research is supported by Science and Engineering Research Canada (NSERC). "In the past, when there have been episodes of major climate change or mass extinction, and species have moved out of their areas of origin into other areas, there have been emerging diseases. Parasites have moved into new areas and they’ve jumped ship into new hosts."


He will present his latest findings on February 21 as part of a panel discussion on environmental systematics at the 2005 meeting of the American Association for the Advancement of Science in Washington D.C.

Dr. Brooks has spent much of the past decade slogging through the dense jungles of Costa Rica tracking down and collecting parasites. Since 1996, he has coordinated the parasite Taxonomic Working Group for the All-Taxa Biodiversity Inventory (ATBI), an international scientific and economic initiative to help developing countries preserve the world’s biodiversity.

In the Guanacaste Conservation Area of northwest Costa Rica, a 1,000 square km (400 square mile) United Nations World Heritage Site that features habitats ranging from rain forests to savannas, the ATBI is documenting an estimated 250,000 species of plants and animals, including everything from viruses to jaguars.

For his part, Dr. Brooks has looked for parasites in more than 4,000 individuals from species ranging from frogs to deer. So far, he has found more than 5,000 different types of these often microscopic hangers-on and created one of the world’s most comprehensive inventories of parasites. And, notably, more than two-thirds of these parasites are new to science.

But Dr. Brooks argues that the real work has only just begun. The researchers still have a very poor to non-existent understanding of the roles these thousands of parasites play in different diseases, something that will require a detailed understanding of their often complex multi-host life cycles. "It’s very difficult to link these things up," he says. "It’s very time consuming to do that, but without that information we don’t know how these parasites are transmitted."

And without basic systematics and taxonomic information about parasites, Dr. Brooks points out that we lack the ability to predict and thus prevent emerging parasitic diseases. "Right now, we’re just reacting out of ignorance whenever an unfamiliar disease catches us off guard and we call that management," says Dr. Brooks. "We’re always behind the curve, because we don’t know where these things are coming from."

In fact, while parasites like malaria are well known, we may have identified only a fraction of the total number of the world’s parasites, and the prospect of cataloguing them poses a daunting technical challenge. Since the physical characteristics of many parasites are very similar, Dr. Brooks and his colleagues are using the latest molecular taxonomy tools to classify parasites based on genetic characteristics.

"These things are evolutionary accidents waiting to happen," he warns. "This is not something brand new – it’s something old. But in this case it’s something that human beings are stimulating. These little evolutionary land mines are going to jump up and bite us."

Dr. Brooks’ AAAS presentation
Systematics: Vanishing Safety Net for Food Security and the Environment

Dr. Daniel Brooks | EurekAlert!
Further information:
http://www.zoo.utoronto.ca
http://www.nserc-crsng.gc.ca/

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>