Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings lead researchers to question basic assumptions of fisheries management

21.02.2005


Biologists speaking at a symposium in Washington, D.C., this week warn that fundamental assumptions underlying current fisheries management practices may be wrong, resulting in management decisions that threaten the future supply of fish and the long-term survival of some fish populations. The symposium, organized by Steven Berkeley of the University of California, Santa Cruz, and Larry Crowder of Duke University Marine Laboratory, is part of the 2005 Annual Meeting of the American Association for the Advancement of Science (AAAS).



"Much of what we now know about fish populations is not being accounted for in current fisheries management," said Berkeley, a research biologist at UCSC’s Long Marine Laboratory.

Berkeley’s research on West Coast rockfish, for example, shows that large, old females are far more important than younger fish in maintaining productive fisheries. The larvae produced by these "big, old, fat females" grow faster, resist starvation better, and are much more likely to survive than the offspring of younger fish. Unfortunately, older fish tend to disappear under current fisheries management practices--the old fish get caught and the younger fish never have a chance to grow old.


"Our research shows that you need to maintain older fish in the population because those are the most successful at reproducing. But normal fishing at what we now think of as safe levels will not maintain old fish in the population," Berkeley said.

The effects of fishing on the age structure of a population is particularly striking in the various species of rockfish, which are very long-lived fish. Many rockfish can live for 50 years or more, and some species can live well over 100 years.

Current fisheries management actually aims to reduce the number of old, slow-growing fish in the population, leaving more room and resources for younger, faster-growing fish. Most marine fish produce huge numbers of eggs and larvae, so the assumption has been that the spawners that remain after harvesting will produce plenty of larvae to replenish the population. According to Berkeley, however, elimination of older generations drastically reduces the ability of the population to replenish itself.

Failure to account for the role of older fish in maintaining healthy populations may help explain the recent collapse of some major West Coast fisheries. The Pacific Fishery Management Council has declared several stocks of groundfish--a group that includes numerous species of rockfish and other bottom-dwelling fish--to be overfished. Tight restrictions were imposed to allow the overfished populations to recover, causing economic hardship for many in the West Coast fishing industry. Recovery of some stocks is expected to take decades.

One way to prevent such problems may be to establish marine reserves--areas where fishing is not allowed and fish populations are able to age naturally.

"Marine reserves are the only good way of protecting the full age structure of a population of fish, so that at least some of the population ages naturally," Berkeley said. "There may be other approaches, but no matter how you manage the fishery, you can’t have a full complement of age classes unless some part of the population is off limits."

Other research presented at the symposium includes new findings about genetically distinct populations within the geographic ranges of some marine fish species, as well as evidence that successful breeders may be few and far between in some populations. These and other findings further undermine fundamental assumptions of current fisheries management, Berkeley said. "These are all things that should make us stop and think about how we manage fisheries," he said.

Berkeley and his collaborators have published recent papers on their research and its implications for fisheries management. Findings on the influence of maternal age on larval growth and survival appeared in the May 2004 issue of Ecology. Management implications of these and other findings were discussed in a paper in the August 2004 issue of Fisheries.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>