Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists urge outcome-based, watershedwide approach to restore the Chesapeake

21.02.2005


More than twenty years after the historic Chesapeake Bay Agreement set out a roadmap for a coordinated clean-up effort at state and federal levels, the region is struggling to follow it, scientists say.

Panelists speaking at a February 20 session of the American Association for the Advancement of Science (AAAS) in Washington, DC emphasized the importance of an adaptive approach to restoration in the Chesapeake––which scientists call adaptive management, in which ideas and approaches can be tested, checked for success, and adjusted along the way. "We are headed in the right direction, we know where we want to go, but need to be more efficient and accountable in order to get there," says Donald Boesch, president of the University of Maryland Center for Environmental Science.

And this modify-as-you-go approach to restoration should be "watershedwide," panelists say, including upland streams and rivers, not only the Bay and its living resources––such as crabs, oysters, and underwater grasses. "What happens every day in backyards and on street corners that are miles and miles from the Bay proper have huge impacts on Bay health," according to ecologist Margaret Palmer from the University of Maryland, College Park. "Restoration of the Bay will not occur unless we stem the loss of headwater streams and freshwater wetlands and restore non-tidal waters," Palmer says.



Palmer is working on the large-scale National River Restoration Science Synthesis Project, to inventory and evaluate ongoing stream and river restoration projects in the Chesapeake watershed. She analyzed existing written records and found that fewer than 5% of these projects have been evaluated for success after completion, a significantly lower percentage than other regions in her analysis. The panel also addressed the need for a watershedwide approach to limit nitrogen input to Chesapeake Bay––which causes the excessive growth of algae and leads to the depletion of oxygen in the bottom layers as it dies, falls to the bottom, and decomposes.

Agricultural fertilizer runoff plays a dominant role in contaminating the Bay with excess nitrogen and has long occupied center stage in restoration efforts. But emissions to the atmosphere from cars and stationary sources, deposited later on the landscape, may be more significant than previously thought, according to biogeochemist Robert Howarth from Cornell University in Ithaca, NY. Climate change will further compound the nitrogen problem in the Bay, Howarth reports. In the absence of management actions, nitrogen flux down the Susqhehanna River, the Bay’s largest tributary, could increase as much as 17% by 2030 and up to 65% by 2095 due to predicted warmer, wetter conditions, he finds.

So what approach can scientists, managers, and citizens take to reverse the Bay’s downward spiral?

"We must think across the boundaries that traditionally lead to disjointed, uncoordinated efforts in freshwater and coastal systems," says Jonathan Kramer, session organizer and director of the Maryland Sea Grant College, part of a network of 30 university-based programs that support innovative marine research and education.

"We have plotted a good course for restoration. What we need now is a method of course correction that encourages us to make adjustments along the way," Kramer says.

Jack Greer | EurekAlert!
Further information:
http://www.mdsg.umd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>