Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists urge outcome-based, watershedwide approach to restore the Chesapeake

21.02.2005


More than twenty years after the historic Chesapeake Bay Agreement set out a roadmap for a coordinated clean-up effort at state and federal levels, the region is struggling to follow it, scientists say.

Panelists speaking at a February 20 session of the American Association for the Advancement of Science (AAAS) in Washington, DC emphasized the importance of an adaptive approach to restoration in the Chesapeake––which scientists call adaptive management, in which ideas and approaches can be tested, checked for success, and adjusted along the way. "We are headed in the right direction, we know where we want to go, but need to be more efficient and accountable in order to get there," says Donald Boesch, president of the University of Maryland Center for Environmental Science.

And this modify-as-you-go approach to restoration should be "watershedwide," panelists say, including upland streams and rivers, not only the Bay and its living resources––such as crabs, oysters, and underwater grasses. "What happens every day in backyards and on street corners that are miles and miles from the Bay proper have huge impacts on Bay health," according to ecologist Margaret Palmer from the University of Maryland, College Park. "Restoration of the Bay will not occur unless we stem the loss of headwater streams and freshwater wetlands and restore non-tidal waters," Palmer says.



Palmer is working on the large-scale National River Restoration Science Synthesis Project, to inventory and evaluate ongoing stream and river restoration projects in the Chesapeake watershed. She analyzed existing written records and found that fewer than 5% of these projects have been evaluated for success after completion, a significantly lower percentage than other regions in her analysis. The panel also addressed the need for a watershedwide approach to limit nitrogen input to Chesapeake Bay––which causes the excessive growth of algae and leads to the depletion of oxygen in the bottom layers as it dies, falls to the bottom, and decomposes.

Agricultural fertilizer runoff plays a dominant role in contaminating the Bay with excess nitrogen and has long occupied center stage in restoration efforts. But emissions to the atmosphere from cars and stationary sources, deposited later on the landscape, may be more significant than previously thought, according to biogeochemist Robert Howarth from Cornell University in Ithaca, NY. Climate change will further compound the nitrogen problem in the Bay, Howarth reports. In the absence of management actions, nitrogen flux down the Susqhehanna River, the Bay’s largest tributary, could increase as much as 17% by 2030 and up to 65% by 2095 due to predicted warmer, wetter conditions, he finds.

So what approach can scientists, managers, and citizens take to reverse the Bay’s downward spiral?

"We must think across the boundaries that traditionally lead to disjointed, uncoordinated efforts in freshwater and coastal systems," says Jonathan Kramer, session organizer and director of the Maryland Sea Grant College, part of a network of 30 university-based programs that support innovative marine research and education.

"We have plotted a good course for restoration. What we need now is a method of course correction that encourages us to make adjustments along the way," Kramer says.

Jack Greer | EurekAlert!
Further information:
http://www.mdsg.umd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Minimized water consumption in CSP plants - EU project MinWaterCSP is making good progress
05.12.2017 | Steinbeis-Europa-Zentrum

nachricht Jena Experiment: Loss of species destroys ecosystems
28.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>