Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine seaweed can detoxify organic pollutants

21.02.2005


Researchers have discovered that marine seaweeds have a remarkable and previously unknown capacity to detoxify serious organic pollutants such as TNT or polycyclic aromatic hydrocarbons, and they may therefore be able to play an important role in protecting the ecological health of marine life.



The studies, conducted by scientists from the College of Engineering at Oregon State University and the Marine Science Center at Northeastern University, were presented today at the annual meeting of the American Association for the Advancement of Science.

The findings may have important implications for seafood safety, since some of the marine organisms most at risk from these toxins are marine invertebrates such as clams, shrimp, oysters or crab that tend to "bioaccumulate" them. One possibility, the researchers say, might be to plant appropriate seaweeds as a protective buffer around areas being used in aquaculture. "We found that certain red seaweeds had an intrinsic ability to detoxify TNT that was 5-10 times faster than any known terrestrial plant," said Greg Rorrer, a professor of chemical engineering at OSU. "Marine seaweeds have a more efficient uptake mechanism than even terrestrial aquatic plants to at least neutralize organic pollutants. "The researchers call this process "phycoremediation," derived from phykos, a Greek word for seaweed.


The studies, which are supported by the Office of Naval Research and the Oregon Sea Grant Program, are of particular interest in the case of trinitrotoluene, or TNT, because of unexploded bombs or military shells found in some places around the world’s oceans. There is a general concern these shells could potentially corrode. "It’s important to know how corals, fisheries and plant life might respond to exposure to TNT or other toxins," Rorrer said. The study is looking at not just TNT, which is commonly found in munitions, but at polycyclic aromatic hydrocarbons, such as naphthalene, benzopyrene and other PAHs that are sometimes associated with the use of motorcraft or other causes.

Ongoing studies found that marine seaweeds processed toxins to a much less harmful form, and in a way that did not appear to harm the seaweed. The biochemistry involved, they say, is similar to that found in many land organisms, but more powerful and effective. Until now, the capability of marine seaweeds to deal with these toxins had never before been demonstrated. It’s unclear yet whether similar plants can be identified, the researchers said, that will perform this function in terrestrial fresh waters, such as streams or lakes.

These research outcomes should lead to the development of new bioremediation technologies that use seaweed in engineered systems to remove organic contaminants from the marine environment, the scientists said.

Studies to create genetically engineered seaweeds that perform these functions even better are also promising, the researchers said.

Greg Rorrer | EurekAlert!
Further information:
http://www.orst.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>