Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants become green Mr. Clean to combat toxic messes

21.02.2005


The next big way to clean up toxic sites may be coaxing plants to become janitors, a Michigan State University scientist says.



Clayton Rugh, an assistant professor of crop and soil sciences, explains that phytoremediation – using plants to remove contaminants from the soil – is evolving.

In the early stages of this technology, plants were used like sponges, soaking up toxic substances so they can be safely discarded. The next step, Rugh says, is plants that act like a green Mr. Clean, with roots that make detergents to break down toxins. "What we’re looking at now are kind of ’Mop & Glo’ plants," Rugh said. "These plants make detergents that secrete into the soil, making the plant a kind of site custodian."


Rugh spoke today at the American Association for the Advancement of Science annual meeting at a session entitled "Phytoremediation: New Solutions to Pollution on Land and in the Sea."

Rugh is collaborating with colleagues at the Institute of Genetics and Cytology at Minsk, Belarus; the University of York in England; and the Sainsbury Laboratory at Norwich Research Park, U.K., to work on strategies to have plants produce biological detergent compounds – called biosurfactants – that target the thorny environmental problems of hydrophobic pollutants.

Hydrophobic pollutants present some of the most difficult remediation challenges. These are chemicals like PCBs, pesticides and dioxins that cling tightly to soil. They plague the environment because they are persistent, dangerous in small concentrations, and yet are hard to remove. They usually require large-scale, expensive dredging or aggressive chemical or thermal treatments. Hydrophobic– which means water insoluble – pollutants have resisted early attempts at phytoremediation because plants can’t readily absorb them.

Rugh and colleagues are having success with genetic engineering to create plants that get to the root of the problem – literally. The rhizosphere is the world that surrounds plant roots, encompassing the bacteria, fungi, "the zone around a plant root that is biologically humming and pulsing with many complex levels of biological interaction," Rugh said.

The trick to make a common laboratory plant – like tobacco – into a janitor is genetic engineering. Rugh said genes from bacteria that naturally produce biological detergents are isolated and inserted into the plants. The plants then gain the ability to release detergents that "ultimately strip the toxic compounds off the soil particles and into the rhizosphere, where they meet their demise. If you change the soil chemistry properly, you really can crank up the phytoremediation process."

The plants and soil microbes can then convert the toxins to more benign chemicals. "We’re engineering tobacco plants to treat cancer-causing pollutants," Rugh said. "Now there’s some beautiful irony."

This method offers a cheaper, less ecologically disruptive alternative to digging up enormous polluted sites.

"There are sites where we have no choice but to consider such alternatives," Rugh said. "There are places impacted by these chemicals where it’s impossible to dig them all up, dredge them or burn them. It’s not economically possible; it simply will never happen and these sites will continue to be problems for wildlife and people."

Clayton Rugh | EurekAlert!
Further information:
http://www.msu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>