Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants become green Mr. Clean to combat toxic messes

21.02.2005


The next big way to clean up toxic sites may be coaxing plants to become janitors, a Michigan State University scientist says.



Clayton Rugh, an assistant professor of crop and soil sciences, explains that phytoremediation – using plants to remove contaminants from the soil – is evolving.

In the early stages of this technology, plants were used like sponges, soaking up toxic substances so they can be safely discarded. The next step, Rugh says, is plants that act like a green Mr. Clean, with roots that make detergents to break down toxins. "What we’re looking at now are kind of ’Mop & Glo’ plants," Rugh said. "These plants make detergents that secrete into the soil, making the plant a kind of site custodian."


Rugh spoke today at the American Association for the Advancement of Science annual meeting at a session entitled "Phytoremediation: New Solutions to Pollution on Land and in the Sea."

Rugh is collaborating with colleagues at the Institute of Genetics and Cytology at Minsk, Belarus; the University of York in England; and the Sainsbury Laboratory at Norwich Research Park, U.K., to work on strategies to have plants produce biological detergent compounds – called biosurfactants – that target the thorny environmental problems of hydrophobic pollutants.

Hydrophobic pollutants present some of the most difficult remediation challenges. These are chemicals like PCBs, pesticides and dioxins that cling tightly to soil. They plague the environment because they are persistent, dangerous in small concentrations, and yet are hard to remove. They usually require large-scale, expensive dredging or aggressive chemical or thermal treatments. Hydrophobic– which means water insoluble – pollutants have resisted early attempts at phytoremediation because plants can’t readily absorb them.

Rugh and colleagues are having success with genetic engineering to create plants that get to the root of the problem – literally. The rhizosphere is the world that surrounds plant roots, encompassing the bacteria, fungi, "the zone around a plant root that is biologically humming and pulsing with many complex levels of biological interaction," Rugh said.

The trick to make a common laboratory plant – like tobacco – into a janitor is genetic engineering. Rugh said genes from bacteria that naturally produce biological detergents are isolated and inserted into the plants. The plants then gain the ability to release detergents that "ultimately strip the toxic compounds off the soil particles and into the rhizosphere, where they meet their demise. If you change the soil chemistry properly, you really can crank up the phytoremediation process."

The plants and soil microbes can then convert the toxins to more benign chemicals. "We’re engineering tobacco plants to treat cancer-causing pollutants," Rugh said. "Now there’s some beautiful irony."

This method offers a cheaper, less ecologically disruptive alternative to digging up enormous polluted sites.

"There are sites where we have no choice but to consider such alternatives," Rugh said. "There are places impacted by these chemicals where it’s impossible to dig them all up, dredge them or burn them. It’s not economically possible; it simply will never happen and these sites will continue to be problems for wildlife and people."

Clayton Rugh | EurekAlert!
Further information:
http://www.msu.edu

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>