Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study links Ebola outbreaks to animal carcasses

15.02.2005


Awareness and wildlife health monitoring is key to preventing future fatalities



All recent Ebola virus outbreaks in humans in forests between Gabon and the Republic of Congo were the result of handling infected wild animal carcasses, according to a study by the Wildlife Conservation Society (WCS) and its regional partners. Appearing in the February edition of the journal Emerging Infectious Diseases, the study found that many animal carcasses tested for Ebola between 2001 and 2003 produced positive results, and found direct links between the deadly disease in animal populations and humans.

"This research proves that hunting and consumption of great apes represent a serious health risk for people in Central Africa, and a risk that can be avoided," said Dr. William Karesh, field veterinarian for the Wildlife Conservation Society and a co-author on the paper. "What we need now is improved awareness of this risk in communities where bushmeat is still a source of sustenance and continued monitoring of wildlife in the region. We have identified a ’win – win’ opportunity by using this information to both protect endangered apes from illegal hunting and to protect humans from deadly outbreaks."


The paper provides definitive proof for the assumption that Ebola moves from wildlife populations to humans through the consumption or handling of carcasses or bushmeat.

Specifically, the researchers found that Ebola infections in wild animals such as gorillas, chimpanzees, and occasionally duikers (a diminutive antelope species), move across the human-wildlife divide through hunters taking either sick animals or carcasses for meat. Hunters can then spread the disease to families and hospital workers, creating the conditions for an epidemic in the process.

Between August 2001 and June 2003, researchers noted that wildlife outbreaks occurred prior to five human outbreaks in the same relative locations. During this same period, 98 animal carcasses were discovered in the region straddling northeast Gabon and the northwest Republic of Congo. Of these carcasses, 21 gorilla, chimp and duiker carcasses were tested for the Ebola virus, with 14 samples being found positive. In 11 cases, instances of human infection were directly linked to gorilla, chimpanzee and duiker carcasses.

To prevent future outbreaks from becoming health crises, health officials and wildlife researchers must continue to work together in monitoring the region’s wildlife for signs of Ebola. Shortly after August 2001, participating agencies founded the Animal Mortality Monitoring Network in collaboration with Gabonese and Congolese Ministries of Forestry and Environment to predict and prevent outbreaks. On two occasions since then, the network alerted health authorities about potential human outbreaks weeks before they occurred.

"The signs of potential outbreaks often occur in remote areas, where roads are barely usable and communications limited," added Karesh. "Conservation organizations such as WCS are therefore critical to the early detection of the conditions that can lead to deadly health emergencies."

John Delaney | EurekAlert!
Further information:
http://www.wcs.org

More articles from Ecology, The Environment and Conservation:

nachricht Minimized water consumption in CSP plants - EU project MinWaterCSP is making good progress
05.12.2017 | Steinbeis-Europa-Zentrum

nachricht Jena Experiment: Loss of species destroys ecosystems
28.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>