Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An invisible threat could change Britain’s landscapes

14.02.2005


People and farm animals are helping an invisible pollutant to change the types of plants that grow in Britain, particularly in remote and rural regions such as the Lake District.



Nitrogen deposits are the cause of the problem. The dung from farm animals produces vast quantities of ammonia. Since the industrial revolution, burning fuels (coal, gas, petrol) has lead to massive emissions of nitrogen oxides into the atmosphere. These practices lead to ammonia and nitrates being deposited back onto the land, acting as fertilisers and acidifying soils.

Scientists working on the NERC-funded GANE (Global Atmospheric Nitrogen Enrichment) research initiative will be presenting the results of their investigations into this unseen and largely unnoticed problem at a conference in London next week.


Professor Alan Davison, Co-ordinator of the research programme, said, “What most people don’t realise is that they are helping to change areas like the Pennines or the Lake District, which are considered to be unspoilt. Their cars are small ‘fertiliser factories’ so every time they start the engine nitrate is released and can be carried over long distances before falling on plants and soils.”

He added, “The chicken and pork that we eat has played a part in contributing to the ammonia that is changing the biodiversity in our countryside. I wonder if farmers, including organic growers, understand that their land is receiving a significant amount of ‘free’ fertiliser.”

Nitrogen cascades through the environment like no other pollutant and at the right level is good – plants depend on the use of nitrogenous fertilisers. But this extra nitrogen is providing an environment for ‘takeover bids’ on the land from more aggressive plant species. The winners are the plants that can mop up nitrogen – grasses, brambles and nettles. They will move in on slower growing plants that live in habitats where low levels of nitrogen are more usual - heather moorland will become grassland, for example. These are often the species in our countryside that we try to conserve.

Land is not the only element affected. It has always been thought that freshwater lakes are immune to the effects of additional nitrogen but GANE researchers have shown that this is not the case. There are nitrogen-sensitive lakes and their plant life may well be at risk from nitrogen deposition.

The extra nitrogen is not just acting on a local scale. It increases the emission from soil and water of the potent greenhouse gas, nitrous oxide.

Findings from the research are not all gloomy – there is good news to be reported as well. GANE scientists have produced a clearer picture of the sources and rates of emission of this gas that will help the UK fulfil its International obligations for reductions. To estimate emissions on a large scale it is necessary to use an ‘emission factor’. The GANE scientists have shown that the UN’s Intergovernmental Panel on Climate Change’s emission factor for ground and drainage waters overestimates nitrous oxide emissions. Only 0.2% of the nitrate in water, not 1.5%, is emitted as nitrous oxide.

Marion O’Sullivan | alfa
Further information:
http://www.nerc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Minimized water consumption in CSP plants - EU project MinWaterCSP is making good progress
05.12.2017 | Steinbeis-Europa-Zentrum

nachricht Jena Experiment: Loss of species destroys ecosystems
28.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>