Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Storm-damaged forests mapped by military radar technology

11.02.2005


In January 2005, FOI (Swedish Defense Research Agency) and Ericsson Microwave Systems mapped storm-damaged areas in southern Sweden using military airborne radar technology mounted in a test aircraft operated by FMV (Swedish Defense Materiel Agency). The trial shows that the technology can cover large land areas as well as identify individual trees including those damaged by winds.



"The results are very promising," says Lars Ulander at FOI. "This technology enables us to get an overview and detailed information which neither aerial photography nor satellite images can provide. This is needed in order to find small and dispersed wind-felled areas, that is, where only a minor portion of the trees have been affected. What’s more, you get good radar images also under poor weather conditions."

The CARABAS-II synthetic aperture radar was used to map two areas in southern Sweden: Växjö-Ljungby in Småland and Tönnersjöheden in Halland which were both severely damaged by a hurricane on 8 January 2005.


"Our radar pictures show that we can clearly distinguish wind-fallen trees from those which are still standing," says Lars Ulander at FOI. "That is usually the hardest part when you take aerial pictures of storm-damaged areas. The National Board of Forestry estimates that the damage amounts to about 70 million cubic meters of timber volume, but they are aware that this is a low estimate since it is difficult to assess the damage in areas where only a small part of the trees have fallen down.

Besides mapping the storm-damaged forests, CARABAS images make it possible to estimate the timber volume of the still standing forest, which is necessary information for setting up new forestry plans.

Intensive work is underway in southern Swedish forests to salvage the timber in damaged areas. However, everyone knows already that there will be a lot of damaged timber remaining in the woods when summer comes, and the risk of large-scale insect infestations is great. Huge economic assets are at stake and the standing forests must be protected from insects.

"Another, more detailed, mapping will be needed in early summer to get an detailed estimate of how much timber is left in the forests, especially in stands that suffered only limited loss of trees. The National Board of Forestry is truly eager to see´whether CARABAS technology can serve as a complement to regular aerial photography and satellite images in mapping small damaged areas," says Magnus Fridh, Head of the Analysis Unit at the National Board of Forestry. A strategic mapping has already been performed based on visual observations from low-flying airplanes.

"The mapping needed in early summer, however, will require considerably more detail in order to find the areas with limited damage," says Lars Ulander at FOI. It is relatively simple to identify areas where all of the trees are down. You can see that both from aerial photos and from satellite images. The problem is that the spruce trees in Småland stand so close together that it is difficult to interpret aerial photos and satellite images. This may be a break-though for the CARABAS technology.

The production of maps and verification of the CARABAS images is being carried out in collaboration with Dianthus, the Swedish University of Agricultural Sciences in Umeå, and Chalmers Institute of Technology.

Åsa Ivarsson | alfa
Further information:
http://www.foi.se

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>