Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New laser research could improve oil exploration success


CSIRO Petroleum and German-based research centre Laser Zentrum Hannover eV (LZH) are collaborating in a project that could save millions of dollars in oil exploration and introduce new Australian geochemical and petroleum analysis techniques to Europe.

Researchers from the two organisations are six months into a three year project working to enhance the capabilities of the on-line laser micropyrolysis gas chromatography-mass spectrometry (LaPy-GC/MS) technique for quality control and geochemical analysis.

Laser micropyrolysis is a widely accepted and effective instrument for many applications such as geochemical analysis for the petroleum industry, tissue analysis in laser medicine, quality control in petrochemistry and laser-assisted production.

CSIRO Petroleum organic geochemist Dr Simon George, based in Sydney, said the project sought to combine the advantages of the similar techniques currently used in both laboratories for different purposes.

At LZH, laser micropyrolysis has been demonstrated as a tool for quality control in the automotive industry, polymer processing and woodworking industries.

CSIRO has mainly used its version of the technique for petroleum industry and geochemical applications, except for some forensic work on analysing paint chips, hairs and photocopier toner. The technique has considerable promise as a forensic tool because such samples are typically very small and only limited data can be acquired from them.

"From the CSIRO’s perspective, enhancing this technique will enable more accurate analysis of small amounts of organic matter in source rocks and reservoir rocks, such as organic particles, microfossils, solid bitumens and oil-bearing fluid inclusions," Dr George said."This will mean that the oil-source potential of different organic materials will be better understood, enabling better prediction of when source rocks generated".

"If single oil inclusion can be analysed, this will also mean that much more detailed oil-charge event histories will be able to be constructed, enabling better prediction of where to drill new oil wells".

"This collaboration means the CSIRO will benefit from much more rapid development and refinement of the method than would be otherwise possible. For both partner countries, the investigation will give impetus to new scientific projects and industrial cooperation."

LZH scientist Dr Stephan Barcikowski said that there were very few operational laser micropyrolysis systems in the world and efforts to refine the technique have been dispersed and isolated.

"This collaboration, between two of the most active labs in the World on laser micropyrolysis, will enable pooling of resources and ideas, mutual testing of concepts and much quicker advancement and development of the technique," Dr Barcikowski said. "One outcome of this project will be to give the LZH new access to the petroleum, geochemistry and petrochemistry market in Germany and Europe".

"The whole potential of this technique for other applications may also be achieved if we can combine the advantages of our systems and further validate this analytical method".

A joint patent of the newly developed instrumentation and method will be considered.

The CSIRO–LZH cooperation is partly funded by the by the International Bureau of the German Ministry of Research and Education with the support of the German Aerospace Centre.

Simon Moore | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>