Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Have profiling microwave radiometer, will travel

31.01.2005


ARM Mobile Facility - Credit: PNNL’s Photo Library


Pacific Northwest National Laboratory set to launch million-dollar mobile atmospheric-measuring station on worldwide tour to fill data gaps in global climate models

Balloon-borne sounding system. Check. Micropulse lidar. Check. Infrared thermometer. Check. Eddy correlation flux measurement system. Eddy correlation flux measurement system?! Check already.

These and a dozen other instruments and computer- and maintenance-shop-jammed cargo containers make up the ARM Mobile Facility, or AMF, the world’s most sophisticated moveable, atmospheric-measuring suite. In early February, the AMF will be carefully packed and shipped from the Department of Energy’s Pacific Northwest National Laboratory, where the system was designed, assembled and is being tested, to Point Reyes National Seashore, north of San Francisco.



There it will be reassembled and take in the local atmosphere, literally, for nine months before heading to sub-Saharan Africa , in time for the 2006 monsoon season in Niger . The instruments are designed to withstand temperatures from minus-40 to plus-120 degrees Fahrenheit, said PNNL’s Kevin Widener, AMF chief engineer and supervisor for the testing.

The station is designed to measure the physical properties of literally anything that blows over and the heat that radiates from clouds and from the ground, said Widener, who, with Tom Ackerman, a Battelle fellow at PNNL, designed and put together the $1.4 million system at the behest of the DOE Office of Science.

The AMF is part of DOE’s Atmospheric Radiation Measurement (ARM) Climate Research Facility, which already includes fixed sites in Oklahoma , the North Slope of Alaska and the Tropical Western Pacific region near northeastern Australia . The AMF expands the ARM program’s reach into additional climatic regions, providing critical information now missing in models.

Besides PNNL’s engineering team, key collaborators in the AMF project include Argonne , Brookhaven and Los Alamos national laboratories. For more information, see http://www.arm.gov/ and http://www.arm.gov/sites/amf.stm .

PNNL ( www.pnl.gov ) is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 3,800, has a $600 million annual budget, and has been managed by Ohio-based Battelle since the lab’s inception in 1965.

Bill Cannon | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>