Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Have profiling microwave radiometer, will travel

31.01.2005


ARM Mobile Facility - Credit: PNNL’s Photo Library


Pacific Northwest National Laboratory set to launch million-dollar mobile atmospheric-measuring station on worldwide tour to fill data gaps in global climate models

Balloon-borne sounding system. Check. Micropulse lidar. Check. Infrared thermometer. Check. Eddy correlation flux measurement system. Eddy correlation flux measurement system?! Check already.

These and a dozen other instruments and computer- and maintenance-shop-jammed cargo containers make up the ARM Mobile Facility, or AMF, the world’s most sophisticated moveable, atmospheric-measuring suite. In early February, the AMF will be carefully packed and shipped from the Department of Energy’s Pacific Northwest National Laboratory, where the system was designed, assembled and is being tested, to Point Reyes National Seashore, north of San Francisco.



There it will be reassembled and take in the local atmosphere, literally, for nine months before heading to sub-Saharan Africa , in time for the 2006 monsoon season in Niger . The instruments are designed to withstand temperatures from minus-40 to plus-120 degrees Fahrenheit, said PNNL’s Kevin Widener, AMF chief engineer and supervisor for the testing.

The station is designed to measure the physical properties of literally anything that blows over and the heat that radiates from clouds and from the ground, said Widener, who, with Tom Ackerman, a Battelle fellow at PNNL, designed and put together the $1.4 million system at the behest of the DOE Office of Science.

The AMF is part of DOE’s Atmospheric Radiation Measurement (ARM) Climate Research Facility, which already includes fixed sites in Oklahoma , the North Slope of Alaska and the Tropical Western Pacific region near northeastern Australia . The AMF expands the ARM program’s reach into additional climatic regions, providing critical information now missing in models.

Besides PNNL’s engineering team, key collaborators in the AMF project include Argonne , Brookhaven and Los Alamos national laboratories. For more information, see http://www.arm.gov/ and http://www.arm.gov/sites/amf.stm .

PNNL ( www.pnl.gov ) is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 3,800, has a $600 million annual budget, and has been managed by Ohio-based Battelle since the lab’s inception in 1965.

Bill Cannon | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>