Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Danish researchers design the first virtual nano-catalyst in the world

31.01.2005


Research offers new opportunities in the fields of renewable energy, pollution control and in the chemical industry.



On January 28th 2005 Science features a paper by researchers from the Technical University of Denmark (DTU) and Haldor Topsøe A/S. The paper demonstrates that by applying the quantum theory you can calculate the performance of catalysts to be used in everything from cars to the future production of hydrogen.

So far the development of new catalysts have been based on very expensive experiments where you test a myriad of different substances. The research now published in Science forms a whole new scientific basis for the understanding of catalytic processes, and consequently for the development of new technology.


”This research is a perfect example of how in the field of nano-technology the gap between basic research and industrial production is very short indeed.” says the Chairman of Nano•DTU, professor Jens Nørskov.

Catalysis forms the basis of more than 20% of the world’s industrial production as well as a whole range of technologies that work towards creating a safer environment. One example is the catalytic converters that remove most of the pollution from today’s cars. We still need to design even better catalysts to remove more pollution from e.g. the exhaust from diesel engines.

The results of the scientists open the way towards designing new effective energy technologies. The production of hydrogen and fuel cells are thus directly dependent on the catalytic processes that we can now create models for – atom by atom.

According to Director of Research, Jens Rostrup-Nielsen from Haldor Topsøe A/S the researchers’ discovery proves ”that by intelligently using the advanced calculations which we are able to perform today, we will soon be capable of reducing the number of experiments necessary to develop new heterogeneous catalysts”.

Professor Jens Nørskov and his group including Dr. Karoliina Honkala (now at the University of Jyväskylä, Finaland) and Dr. Ioannis Remediakis (now at the University of Crete, Greece) at the Department of Physics at DTU have developed new theoretic approaches based on quantum physics, enabling them to predict the catalytic activity for any catalyst. Together with professor Claus Hviid Christensen of the Department of Chemistry at DTU and researchers at Haldor Topsøe A/S, headed by Dr. Søren Dahl, the calculations have been tested in detailed experiments on technical catalysts made up of nanometer sized metallic particles.

Professor Jens Nørskov | alfa
Further information:
http://www.dtu.dk

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>