Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Danish researchers design the first virtual nano-catalyst in the world

31.01.2005


Research offers new opportunities in the fields of renewable energy, pollution control and in the chemical industry.



On January 28th 2005 Science features a paper by researchers from the Technical University of Denmark (DTU) and Haldor Topsøe A/S. The paper demonstrates that by applying the quantum theory you can calculate the performance of catalysts to be used in everything from cars to the future production of hydrogen.

So far the development of new catalysts have been based on very expensive experiments where you test a myriad of different substances. The research now published in Science forms a whole new scientific basis for the understanding of catalytic processes, and consequently for the development of new technology.


”This research is a perfect example of how in the field of nano-technology the gap between basic research and industrial production is very short indeed.” says the Chairman of Nano•DTU, professor Jens Nørskov.

Catalysis forms the basis of more than 20% of the world’s industrial production as well as a whole range of technologies that work towards creating a safer environment. One example is the catalytic converters that remove most of the pollution from today’s cars. We still need to design even better catalysts to remove more pollution from e.g. the exhaust from diesel engines.

The results of the scientists open the way towards designing new effective energy technologies. The production of hydrogen and fuel cells are thus directly dependent on the catalytic processes that we can now create models for – atom by atom.

According to Director of Research, Jens Rostrup-Nielsen from Haldor Topsøe A/S the researchers’ discovery proves ”that by intelligently using the advanced calculations which we are able to perform today, we will soon be capable of reducing the number of experiments necessary to develop new heterogeneous catalysts”.

Professor Jens Nørskov and his group including Dr. Karoliina Honkala (now at the University of Jyväskylä, Finaland) and Dr. Ioannis Remediakis (now at the University of Crete, Greece) at the Department of Physics at DTU have developed new theoretic approaches based on quantum physics, enabling them to predict the catalytic activity for any catalyst. Together with professor Claus Hviid Christensen of the Department of Chemistry at DTU and researchers at Haldor Topsøe A/S, headed by Dr. Søren Dahl, the calculations have been tested in detailed experiments on technical catalysts made up of nanometer sized metallic particles.

Professor Jens Nørskov | alfa
Further information:
http://www.dtu.dk

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>