Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arid Australian interior linked to landscape burning by ancient humans

26.01.2005


The image of a controlled burn in the interior of Australia today, featured on the cover of the January 2005 issue of Geology, illustrates how Australia might have looked 50,000 years ago. Photo courtesy Gifford Miller, University of Colorado at Boulder


Landscape burning by ancient hunters and gatherers may have triggered the failure of the annual Australian Monsoon some 12,000 years ago, resulting in the desertification of the country’s interior that is evident today, according to a new study.

University of Colorado at Boulder Professor Gifford Miller said the study builds on his research group’s previous findings that dozens of giant animal species went extinct in Australia roughly 50,000 years ago due to ecosystem changes caused by human burning. The new study indicates such burning may have altered the flora enough to decrease the exchange of water vapor between the biosphere and atmosphere, causing the failure of the Australian Monsoon over the interior.

"The question is whether localized burning 50,000 years ago could have had a continental-scale effect," said Miller, a fellow at CU-Boulder’s Institute of Arctic and Alpine Research. "The implications are that the burning practices of early humans may have changed the climate of the Australian continent by weakening the penetration of monsoon moisture into the interior."



A paper on the subject by Miller appears in the January issue of Geology. Co-authors include CU-Boulder’s Jennifer Mangan, David Pollard, Starley Thompson and Benjamin Felzer of the National Center for Atmospheric Research in Boulder and John Magee of Australian National University in Canberra.

Geologic evidence indicates the interior of Australia was much wetter about 125,000 years ago during the last interglacial period. Although planetary and meteorological conditions during the most recent ice age caused Earth’s major monsoons to waver, all except the Australian Monsoon were "reinvigorated" to full force during the Holocene Period beginning about 12,000 years ago, he said.

Although the Australian Monsoon delivers about 39 inches of rain annually to the north coast as it moves south from Asia, only about 13 inches of rain now falls on the continent’s interior each year, said Miller, also a CU-Boulder geological sciences professor. Lake Eyre, a deep-water lake in the continent’s interior that was filled by regular monsoon rains about 60,000 years ago, is now a huge salt flat that is occasionally covered by a thin layer of salty water.

The earliest human colonizers are believed to have arrived in Australia by sea from Indonesia about 50,000 years ago, using fire as a tool to hunt, clear paths, signal each other and promote the growth of certain plants, he said. Fossil remains of browse-dependent birds and marsupials indicate the interior was made up of trees, shrubs and grasses rather than the desert scrub environment present today.
The researchers used global climate model simulations to evaluate the atmospheric and meteorological conditions in Australia over time, as well as the sensitivity of the monsoon to different vegetation and soil types. A climate model simulating a forested Australia produced twice as much annual monsoon precipitation over the continental interior as the model simulating arid scrub conditions, he said.

"Systematic burning across the semiarid zone, where nutrients are the lowest of any continental region, may have been responsible for the rapid transformation of a drought-tolerant ecosystem high in broad-leaf species to the modern desert scrub," he said. "In the process, vegetation feedbacks promoting the penetration of monsoon moisture into the continental interior would have been disrupted."

More than 85 percent of Australia’s megafauna weighing more than 100 pounds went extinct roughly 50,000 years ago, including an ostrich-sized bird, 19 species of marsupials, a 25-foot-long lizard and a Volkswagen-sized tortoise, he said.

Evidence for burning includes increased charcoal deposits preserved in lake sediments at the boundary between rainforest and interior desert beginning about 50,000 years ago, Miller said. In addition, a number of rainforest gymnosperms -- plants whose seeds are not encased and protected and are therefore more vulnerable to fire -- went extinct at about that time.

Natural fires resulting from summer lightning strikes have played an integral part in the ecology of Australia’s interior, and many plant species are adapted to regimes of frequent fires, he said. "But the systematic burning of the interior by the earliest colonizers differed enough from the natural fire cycle that key ecosystems may have been pushed past a threshold from which they could not recover."

Gifford Miller | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>