Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First view of a world without fire

25.01.2005


The natural vegetation covering the globe looks like it does because of the climate, doesn’t it? Forests are found where water is abundant and it is not too cold, deserts are found where it is dry. This is what our intuition tells us – but it is not always true.



New research carried out by Bond, Woodward and Midgley from University of Cape Town, University of Sheffield and the South African National Biodiversity Institute of and published in the February 2005 issue of ’New Phytologist’ has shown that a potent force overrides climate in shaping vegetation – fire.

Much of the world is covered by vegetation that seems out of place, for example in Mediterranean regions of South Africa low shrublands are found where rainfall is great enough to support forests. We also know, from satellite imagery, that wildfires are a global phenomenon occurring on all vegetated continents. Bond et al. suspected that fires are common in areas where vegetation does not "fit" the climate. If true, this suggests that fire has a major effect on the ecosystems of the world. So, how different would the world look if we could ’switch fire off’?


A new type of ecosystem model, Dynamic Global Vegetation Models (DGVMs) – developed to answer questions on the link between global climate change and vegetation, was used to simulate a world without fire for this research.

Dr William Bond, University of Cape Town, explains: "For the first time, we have a global estimate of the importance of fire in shaping the natural world: without fire, the extent of closed forests would more than double (from 27% to 56% of the vegetated surface of the world), tropical grasslands and savannas would shrink to less than half (48%) of their current extent and temperate grasslands and shrublands, including the shrublands of Mediterranean climate regions, would shrink to 60% of their current extent."

"Fires destroy property and livelihoods and affect local air quality, but perhaps more importantly, fires destroy above-ground vegetation on a huge scale – burning the critical carbon sinks which form such a fundamental part of the world’s attempts, through the Kyoto protocol, to slow the rate of carbon dioxide increase in atmosphere. Human influences on fire are near universal. We suppress fires in some regions and ignite them in others. However the fire-maintained ecosystems identified in our research have been burning for millions of years and include some of the most biodiverse regions of the world. We need to balance the necessity of using fire in these ecosystems with protecting forests from indiscriminate burning. This issue requires urgent and focused attention from the ecological and geochemical communities if we are to manage the effects of global change on our planet."

Fire changes vegetation quickly, directly and fundamentally – it is now clear from this research that a fundamental understanding of landscape fires is necessary for comprehending the way much of the world works and for projecting the effects of changing human land use and climate on vegetation. Thus, understanding direct climate effects on our biosphere is far from enough for projecting intensifying global change impacts into the future.

William Bond | EurekAlert!
Further information:
http://www.newphytologist.com
http://www.blackwellpublishing.com/

More articles from Ecology, The Environment and Conservation:

nachricht Minimized water consumption in CSP plants - EU project MinWaterCSP is making good progress
05.12.2017 | Steinbeis-Europa-Zentrum

nachricht Jena Experiment: Loss of species destroys ecosystems
28.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>