Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First view of a world without fire

25.01.2005


The natural vegetation covering the globe looks like it does because of the climate, doesn’t it? Forests are found where water is abundant and it is not too cold, deserts are found where it is dry. This is what our intuition tells us – but it is not always true.



New research carried out by Bond, Woodward and Midgley from University of Cape Town, University of Sheffield and the South African National Biodiversity Institute of and published in the February 2005 issue of ’New Phytologist’ has shown that a potent force overrides climate in shaping vegetation – fire.

Much of the world is covered by vegetation that seems out of place, for example in Mediterranean regions of South Africa low shrublands are found where rainfall is great enough to support forests. We also know, from satellite imagery, that wildfires are a global phenomenon occurring on all vegetated continents. Bond et al. suspected that fires are common in areas where vegetation does not "fit" the climate. If true, this suggests that fire has a major effect on the ecosystems of the world. So, how different would the world look if we could ’switch fire off’?


A new type of ecosystem model, Dynamic Global Vegetation Models (DGVMs) – developed to answer questions on the link between global climate change and vegetation, was used to simulate a world without fire for this research.

Dr William Bond, University of Cape Town, explains: "For the first time, we have a global estimate of the importance of fire in shaping the natural world: without fire, the extent of closed forests would more than double (from 27% to 56% of the vegetated surface of the world), tropical grasslands and savannas would shrink to less than half (48%) of their current extent and temperate grasslands and shrublands, including the shrublands of Mediterranean climate regions, would shrink to 60% of their current extent."

"Fires destroy property and livelihoods and affect local air quality, but perhaps more importantly, fires destroy above-ground vegetation on a huge scale – burning the critical carbon sinks which form such a fundamental part of the world’s attempts, through the Kyoto protocol, to slow the rate of carbon dioxide increase in atmosphere. Human influences on fire are near universal. We suppress fires in some regions and ignite them in others. However the fire-maintained ecosystems identified in our research have been burning for millions of years and include some of the most biodiverse regions of the world. We need to balance the necessity of using fire in these ecosystems with protecting forests from indiscriminate burning. This issue requires urgent and focused attention from the ecological and geochemical communities if we are to manage the effects of global change on our planet."

Fire changes vegetation quickly, directly and fundamentally – it is now clear from this research that a fundamental understanding of landscape fires is necessary for comprehending the way much of the world works and for projecting the effects of changing human land use and climate on vegetation. Thus, understanding direct climate effects on our biosphere is far from enough for projecting intensifying global change impacts into the future.

William Bond | EurekAlert!
Further information:
http://www.newphytologist.com
http://www.blackwellpublishing.com/

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>