Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First view of a world without fire


The natural vegetation covering the globe looks like it does because of the climate, doesn’t it? Forests are found where water is abundant and it is not too cold, deserts are found where it is dry. This is what our intuition tells us – but it is not always true.

New research carried out by Bond, Woodward and Midgley from University of Cape Town, University of Sheffield and the South African National Biodiversity Institute of and published in the February 2005 issue of ’New Phytologist’ has shown that a potent force overrides climate in shaping vegetation – fire.

Much of the world is covered by vegetation that seems out of place, for example in Mediterranean regions of South Africa low shrublands are found where rainfall is great enough to support forests. We also know, from satellite imagery, that wildfires are a global phenomenon occurring on all vegetated continents. Bond et al. suspected that fires are common in areas where vegetation does not "fit" the climate. If true, this suggests that fire has a major effect on the ecosystems of the world. So, how different would the world look if we could ’switch fire off’?

A new type of ecosystem model, Dynamic Global Vegetation Models (DGVMs) – developed to answer questions on the link between global climate change and vegetation, was used to simulate a world without fire for this research.

Dr William Bond, University of Cape Town, explains: "For the first time, we have a global estimate of the importance of fire in shaping the natural world: without fire, the extent of closed forests would more than double (from 27% to 56% of the vegetated surface of the world), tropical grasslands and savannas would shrink to less than half (48%) of their current extent and temperate grasslands and shrublands, including the shrublands of Mediterranean climate regions, would shrink to 60% of their current extent."

"Fires destroy property and livelihoods and affect local air quality, but perhaps more importantly, fires destroy above-ground vegetation on a huge scale – burning the critical carbon sinks which form such a fundamental part of the world’s attempts, through the Kyoto protocol, to slow the rate of carbon dioxide increase in atmosphere. Human influences on fire are near universal. We suppress fires in some regions and ignite them in others. However the fire-maintained ecosystems identified in our research have been burning for millions of years and include some of the most biodiverse regions of the world. We need to balance the necessity of using fire in these ecosystems with protecting forests from indiscriminate burning. This issue requires urgent and focused attention from the ecological and geochemical communities if we are to manage the effects of global change on our planet."

Fire changes vegetation quickly, directly and fundamentally – it is now clear from this research that a fundamental understanding of landscape fires is necessary for comprehending the way much of the world works and for projecting the effects of changing human land use and climate on vegetation. Thus, understanding direct climate effects on our biosphere is far from enough for projecting intensifying global change impacts into the future.

William Bond | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>