Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-Bacterial Additive Widespread In U.S. Waterways

24.01.2005


Many rivers and streams in the United States are believed to contain a toxic antimicrobial chemical whose environmental fate was never thoroughly scrutinized despite large-scale production and usage for almost half a century, according to an analysis conducted by researchers at the Johns Hopkins Bloomberg School of Public Health. The chemical, triclocarban, has been widely used for decades in hand soaps and other cleaning products, but rarely was monitored for or detected in the environment. The new findings suggest that triclocarban contamination is greatly underreported. The study is published in the current online edition of Environmental Science & Technology, a peer-reviewed journal of the American Chemical Society.



“We’ve been using triclocarban for almost half a century at rates approaching 1 million pounds per year, but we have essentially no idea of what exactly happens to the compound after we flush it down the drain,” said the study’s lead author, Rolf U. Halden, PhD, PE, assistant professor in the School’s Department of Environmental Health Sciences and founding member of its Center for Water and Health.

The nationwide assessment of triclocarban contamination is based in part on an analysis of water samples collected from rivers in and around Baltimore, Md., as well as from local water filtration and wastewater treatment plants. From the samples, Dr. Halden and his summer research intern, Daniel H. Paull, now a graduate student in the Chemistry department at Johns Hopkins University, observed the occurrence of triclocarban in the environment correlated strongly with that of triclosan, another commonly used antimicrobial chemical that has been studied in much greater detail because it is more easily detectable. Using an empirical model and published data on the environmental occurrence of triclosan, the researchers predicted triclocarban concentrations for 85 U.S. streams. The study results suggest that the antimicrobial contaminant is present in 60 percent of the U.S. water resources investigated, thereby making it the fifth most frequent contaminant among 96 pharmaceuticals, personal care products and organic wastewater contaminants evaluated.


To determine the validity of the analysis, the researchers compared their predicted nationwide levels of contamination to experimentally measured concentrations in the Greater Baltimore region, and found no statistically significant differences. The results also show that the levels of triclocarban in water resources nationwide are much higher than previously thought.

In surface water from the Baltimore region, the researchers detected triclocarban at concentrations of up to 6.75 micrograms per liter (parts-per-billion). This maximum concentration was 28-fold higher than previously reported levels, which are currently used by the U.S. Environmental Protection Agency for evaluation of the ecological and human health risks of triclocarban.

“Along with its chemical cousin triclosan, the antimicrobial compound triclocarban should be added to the list of polychlorinated organic compounds that deserve our attention due to unfavorable environmental characteristics, which include long-term persistence and potential bioaccumulation. Triclocarban, for example, has an estimated half-life of 1.5 years in aquatic sediments. Do the potential benefits of antimicrobial products outweigh their known environmental and human health risks? This is a scientifically complex question consumers, knowingly or unknowingly, answer to everyday in the checkout line of the grocery store,” said Dr. Halden.

“Co-Occurrence of Triclocarban and Triclosan in U.S. Water Resources” was written by Rolf U. Halden and Daniel H. Paull.

The research was supported by the National Institute for Environmental Health Sciences through the Johns Hopkins Center in Urban and Environmental Health, the Maryland Cigarette Restitution Program Research Grant, the Johns Hopkins Bloomberg School of Public Health Faculty Innovation Award and the Johns Hopkins Center for a Livable Future

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>