Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-Bacterial Additive Widespread In U.S. Waterways

24.01.2005


Many rivers and streams in the United States are believed to contain a toxic antimicrobial chemical whose environmental fate was never thoroughly scrutinized despite large-scale production and usage for almost half a century, according to an analysis conducted by researchers at the Johns Hopkins Bloomberg School of Public Health. The chemical, triclocarban, has been widely used for decades in hand soaps and other cleaning products, but rarely was monitored for or detected in the environment. The new findings suggest that triclocarban contamination is greatly underreported. The study is published in the current online edition of Environmental Science & Technology, a peer-reviewed journal of the American Chemical Society.



“We’ve been using triclocarban for almost half a century at rates approaching 1 million pounds per year, but we have essentially no idea of what exactly happens to the compound after we flush it down the drain,” said the study’s lead author, Rolf U. Halden, PhD, PE, assistant professor in the School’s Department of Environmental Health Sciences and founding member of its Center for Water and Health.

The nationwide assessment of triclocarban contamination is based in part on an analysis of water samples collected from rivers in and around Baltimore, Md., as well as from local water filtration and wastewater treatment plants. From the samples, Dr. Halden and his summer research intern, Daniel H. Paull, now a graduate student in the Chemistry department at Johns Hopkins University, observed the occurrence of triclocarban in the environment correlated strongly with that of triclosan, another commonly used antimicrobial chemical that has been studied in much greater detail because it is more easily detectable. Using an empirical model and published data on the environmental occurrence of triclosan, the researchers predicted triclocarban concentrations for 85 U.S. streams. The study results suggest that the antimicrobial contaminant is present in 60 percent of the U.S. water resources investigated, thereby making it the fifth most frequent contaminant among 96 pharmaceuticals, personal care products and organic wastewater contaminants evaluated.


To determine the validity of the analysis, the researchers compared their predicted nationwide levels of contamination to experimentally measured concentrations in the Greater Baltimore region, and found no statistically significant differences. The results also show that the levels of triclocarban in water resources nationwide are much higher than previously thought.

In surface water from the Baltimore region, the researchers detected triclocarban at concentrations of up to 6.75 micrograms per liter (parts-per-billion). This maximum concentration was 28-fold higher than previously reported levels, which are currently used by the U.S. Environmental Protection Agency for evaluation of the ecological and human health risks of triclocarban.

“Along with its chemical cousin triclosan, the antimicrobial compound triclocarban should be added to the list of polychlorinated organic compounds that deserve our attention due to unfavorable environmental characteristics, which include long-term persistence and potential bioaccumulation. Triclocarban, for example, has an estimated half-life of 1.5 years in aquatic sediments. Do the potential benefits of antimicrobial products outweigh their known environmental and human health risks? This is a scientifically complex question consumers, knowingly or unknowingly, answer to everyday in the checkout line of the grocery store,” said Dr. Halden.

“Co-Occurrence of Triclocarban and Triclosan in U.S. Water Resources” was written by Rolf U. Halden and Daniel H. Paull.

The research was supported by the National Institute for Environmental Health Sciences through the Johns Hopkins Center in Urban and Environmental Health, the Maryland Cigarette Restitution Program Research Grant, the Johns Hopkins Bloomberg School of Public Health Faculty Innovation Award and the Johns Hopkins Center for a Livable Future

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>