Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Uncalculated Risks in Some Pesticides


Some Compounds Show Dramatic Differences in Toxicity And Rate of Break Down Between Isomers

Researchers at the University of California, Riverside have demonstrated that isomers – or the mirror-image structures – of some pesticides, although chemically identical, have very different biological and environmental impacts between the two sides. This may have significant implications for risk assessment and research and development directions of new products.

The environmental risks of pesticides have been traditionally evaluated on the basis of their specific chemical structure, according to Jay Gan, a UCR professor of environmental chemistry. He found, however, that this group, known as chiral pesticides, including many widely used organophosphates and synthetic pyrethroids, pose previously uncalculated toxic risks due to the differing biological reactions of the isomers in the environment.

A characteristic of chiral compounds is that they occur as isomers with two (or more) identical but mirror-image structures that, as Gan’s research indicates, while chemically identical, may behave biologically differently. These mirror-image molecules are known as enantiomers. Currently about 25 percent of pesticides fall into this classification and this ratio is expected to increase as new products are being introduced into the market.

Gan’s findings add weight to the argument that regulators should consider whether a product is a chiral compound when assessing its risk, and that the chemical industry should pursue the value of producing single isomer products instead of mixed isomer products.

By using pesticides with just the active isomer, farmers will likely achieve the same degree of pest control at a much-reduced rate of chemical use. This will have environmental benefits as much less chemical is introduced into the environment.

The findings were published in a paper titled Enantioselectivity in Environmental Safety of Current Chiral Insecticides in last week’s online edition of the Proceedings of the National Academy of Sciences. Gan published the paper in cooperation with a team of UCR colleagues including Daniel Schlenk, professor of aquatic ecotoxicology; Soil Physics Professor, William A. Jury; and visiting professor Weiping Liu.

Gan and his colleagues at UC Riverside decided to look at chiral insecticides that are widely used today. They examined five common insecticides, including the organophosphates, such as profenofos, and synthetic pyrethroids, such as permethrin. For all these compounds, one of the optical isomers, or enantiomers, was consistently over 10 times more toxic than the other to Ceriodaphia, a small crustacean often used to assess water toxicity.

The researchers also found that a specific enantiomer lingered longer in the environment than the other enantiomers, making one enantiomer of permethrin almost twice as prevalent in sediment or runoff water. This means that the environmental impact of these pesticides may depend on the behavior of a particular enantiomer instead of the whole compound, the team concluded.

Regulators currently examine the safety of the pesticide straight from the factory, in which both enantiomers are normally present in an equal ratio. On the other hand, knowing about such selectivity would be valuable for the chemical industry. For instance, if only one enantiomer is known to contribute to the pest control efficacy, it would be environmentally advantageous to manufactured products containing just the active component. The rate of use may be cut in half, and the chemical load into the environment will also be halved.

“The difference in terms of pesticide regulation and future R&D directions could be pretty drastic for chiral pesticides,” said Gan.

Ricardo Duran | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>