Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Uncalculated Risks in Some Pesticides


Some Compounds Show Dramatic Differences in Toxicity And Rate of Break Down Between Isomers

Researchers at the University of California, Riverside have demonstrated that isomers – or the mirror-image structures – of some pesticides, although chemically identical, have very different biological and environmental impacts between the two sides. This may have significant implications for risk assessment and research and development directions of new products.

The environmental risks of pesticides have been traditionally evaluated on the basis of their specific chemical structure, according to Jay Gan, a UCR professor of environmental chemistry. He found, however, that this group, known as chiral pesticides, including many widely used organophosphates and synthetic pyrethroids, pose previously uncalculated toxic risks due to the differing biological reactions of the isomers in the environment.

A characteristic of chiral compounds is that they occur as isomers with two (or more) identical but mirror-image structures that, as Gan’s research indicates, while chemically identical, may behave biologically differently. These mirror-image molecules are known as enantiomers. Currently about 25 percent of pesticides fall into this classification and this ratio is expected to increase as new products are being introduced into the market.

Gan’s findings add weight to the argument that regulators should consider whether a product is a chiral compound when assessing its risk, and that the chemical industry should pursue the value of producing single isomer products instead of mixed isomer products.

By using pesticides with just the active isomer, farmers will likely achieve the same degree of pest control at a much-reduced rate of chemical use. This will have environmental benefits as much less chemical is introduced into the environment.

The findings were published in a paper titled Enantioselectivity in Environmental Safety of Current Chiral Insecticides in last week’s online edition of the Proceedings of the National Academy of Sciences. Gan published the paper in cooperation with a team of UCR colleagues including Daniel Schlenk, professor of aquatic ecotoxicology; Soil Physics Professor, William A. Jury; and visiting professor Weiping Liu.

Gan and his colleagues at UC Riverside decided to look at chiral insecticides that are widely used today. They examined five common insecticides, including the organophosphates, such as profenofos, and synthetic pyrethroids, such as permethrin. For all these compounds, one of the optical isomers, or enantiomers, was consistently over 10 times more toxic than the other to Ceriodaphia, a small crustacean often used to assess water toxicity.

The researchers also found that a specific enantiomer lingered longer in the environment than the other enantiomers, making one enantiomer of permethrin almost twice as prevalent in sediment or runoff water. This means that the environmental impact of these pesticides may depend on the behavior of a particular enantiomer instead of the whole compound, the team concluded.

Regulators currently examine the safety of the pesticide straight from the factory, in which both enantiomers are normally present in an equal ratio. On the other hand, knowing about such selectivity would be valuable for the chemical industry. For instance, if only one enantiomer is known to contribute to the pest control efficacy, it would be environmentally advantageous to manufactured products containing just the active component. The rate of use may be cut in half, and the chemical load into the environment will also be halved.

“The difference in terms of pesticide regulation and future R&D directions could be pretty drastic for chiral pesticides,” said Gan.

Ricardo Duran | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>