Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New life discovered in the deep Mediterranean


Scientists have discovered a new group of microbes thriving in extreme conditions deep in the Mediterranean Sea. Their existence in such hostile environments hints at the possibility of life on other planets.

The European consortium carrying out the three-year Biodeep project, which includes researchers from the University of Essex, now plans to test how the microbes tolerate these unique conditions. The group hopes their adaptations could be exploited in medicine, agriculture or other biotechnological applications.

The researchers tested four ‘brine lakes’ with salt concentrations ten times higher than seawater, a lack of oxygen, and a pressure 400 times greater than atmospheric pressure. These basins in the sea-bed east of Sicily are some 4km below sea level.

The European Commission-funded study aimed to discover whether the brine lakes, because their high densities prevent them mixing with the overlying seawater, represented isolated habitats in which novel life forms had evolved.

The evidence of life in one basin, the Discovery basin, which contained a high concentration of the chemical magnesium chloride, particularly surprised the researchers.

Terry McGenity, the lead scientist of the Essex group, said: ‘This preliminary evidence for life in Discovery brine, in combination with the recent finding of magnesium salts on Mars, and the possibility of a magnesium-rich subsurface ocean on Europa, one of the moons of the planet Jupiter, is tantalising, and has interesting implications for possible life on other planets.’

The research consortium, consisting of scientists from institutions in the Netherlands, Italy, Greece, France, Germany and the UK, made three research cruises to carry out the first detailed study of these deep-sea lakes and to sample and characterize the organisms living there.

Their findings are reported in the current issue (7 January) of the leading research journal Science. A number of new types of microbes, including a completely new evolutionary line, the MSBL1 group of Archaea, were discovered.

Professor Ken Timmis, from the University of Essex and the German Research Centre for Biotechnology, said: ‘Microbes are the most diverse forms of life, and have proven to be a rich source of products and activities that find applications in biotechnology, such as antibiotics and other drugs used in medicine, enzymes used in the manufacture of chemicals, and metabolites used in the food industry. This new diversity represents new potential for biotechnological applications.’

Jenny Grinter | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The nanostructured cloak of invisibility

25.10.2016 | Life Sciences

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

More VideoLinks >>>