Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sardines May Prevent Toxic Gas Eruptions off the California and African Coasts

12.01.2005


Milky, turquoise-colored “dead zones,” some as large as the U.S. State of New Jersey, that are appearing repeatedly off the coast of southwest Africa, may be a sign of things to come for other areas of the coastlines of the eastern Atlantic and Pacific oceans. Toxic gas eruptions, bubbling up from the ocean floor, kill sea life, annoy human seaside residents, and may even intensify global warming. But the simple sardine may save the day, according to a study from the Pew Institute for Ocean Science.



In an article published in the November issue of Ecology Letters, authors Andrew Bakun and Scarla Weeks compare several areas around the world where strong offshore winds cause an upwelling of nutrients in the ocean and thus a population explosion of phytoplankton, the microscopic plant life that drifts through the ocean. Studying the waters off the coast of Namibia, the scientists found the resulting overproduction of phytoplankton died and sank to the bottom, and the decaying organic matter released copious amounts of methane and poisonous “rotten egg” smelling hydrogen sulfide gas.

As methane is 21 times more effective than carbon dioxide at trapping heat in the atmosphere, the resulting climate change may intensify this upwelling process and the possibility of even larger and more plentiful eruptions.


One key that may keep this situation from worsening, the authors say, is to prevent the overfishing of sardines, which can devour large quantities of phytoplankton. “The region in question formerly hosted a large population of sardines that have been overfished,” says Bakun, a member of the Pew Institute and professor of marine biology and fisheries at the University of Miami Rosenstiel School of Marine and Atmospheric Science. “It is at least encouraging that a minor resurgence of sardine abundance coincided with a noticeable temporary hiatus in eruption frequency off Namibia in 2002.”

Bakun and Weeks also warn that the areas around Cape Mendocino, California, and Cape Sim, Morocco, may be dangerously close to the “tipping point,” possibly ripe for phytoplankton population explosions followed by their gaseous demise. “This study demonstrates that overfishing one species of fish, such as sardines, can profoundly alter an entire marine ecosystem in ways that may be difficult or impossible to reverse,” says Ellen Pikitch, executive director of the Pew Institute for Ocean Sciences and an expert on fishery science and management.

Pew’s Chief Scientist Elizabeth Babcock adds, “The California sardine fishery has recovered somewhat since it peaked in the 1940s and was depleted by the early 1960s. We hope that the fishery can continue to recover to help prevent such a terrible situation from occurring.”

The paper evaluates 16 areas around the world, including four along the Pacific coast of North America, for the risk of developing these gaseous eruptions. To learn more, visit the Ecology Letters website at http://www.blackwellpublishing.com/journal.asp?ref=1461-023x.
Bakun’s 42 years in marine science includes scientific positions with the International Indian Ocean Expedition, US National Oceanic and Atmospheric Administration’s Pacific Fisheries Environmental Laboratory, the United Nations’ Food and Agriculture Organization, France’s Institut de Recherche pour le Dévelopment (IRD), and Columbia University’s International Research Institute for Climate Prediction.

A well-known South African scientist, Weeks has spent the past decade as the principal developer of satellite ocean color information for southern Africa. Pew Institute for Ocean Science, in partnership with the University of Miami Rosenstiel School of Marine and Atmospheric Science, was founded in 2003 thanks to a multi-year grant from the Pew Charitable Trusts to undertake, sponsor, and promote world-class scientific activity aimed at protecting the world’s oceans and the species that inhabit them. The scientific role of the Institute is to increase public understanding of the causes and the consequences of problems affecting the marine environment. The conservation role is to promote solutions to these problems.

Kate Stinchcombe | alfa
Further information:
http://www.pewoceanscience.org
http://www.blackwellpublishing.com

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>