Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists study ocean to understand global cooling

07.01.2005


The depth in the ocean where calcium carbonate dissolves at a faster rate than it is deposited is called the calcite compensation depth (CCD). At present this depth is approximately 4,500 meters (14,700 feet) with some variation between and within ocean basins. Because the CCD is linked to ocean acidity, which is, in turn, linked to atmospheric carbon dioxide concentrations and, hence, to global climate, it is important for scientists to understand the impact of possible changes in its depth.

In the current issue of Nature, URI Graduate School of Oceanography (GSO) visiting scientist Helen Coxall describes how the deepening of the CCD in the Pacific Ocean correlated to global cooling approximately 34 million years ago, when the first significant permanent ice sheets appeared on Antarctica. Other members of the scientific team include Paul Wilson, Southampton Oceanography Center, UK, Heiko Pälike and Jan Backman, University of Stockholm, Sweden, and Caroline H. Lear, Rutgers University, New Jersey.

"This event 34 million years ago marks the transition from a warm ’greenhouse’ climate state, when atmospheric carbon dioxide levels were naturally high and there was no or very little ice at the poles, to the cold glaciated climate state of the modern world that was characterized by lower carbon dioxide," said Coxall. "It is therefore equivalent to global warming in reverse. The results of our study are crucial to the understanding of how climate change works, especially how rapidly major changes in ice-sheet growth and sea level rise and fall occur under altered conditions of atmospheric carbon dioxide."



Coxall and her colleagues analyzed sediment records and found that the deepening of the CCD was more rapid than previously documented and occurred in two jumps of about 40,000 years each, in step with the onset of Antarctic ice-sheet growth. The 40,000-year interval was separated by a plateau of 200,000 years.

The glaciation began after the Earth entered a cooler phase during an interval when the Earth’s orbit of the Sun favored cool summers. The researchers’ observations suggest that it was the prolonged absence of warm summers, inhibiting summer snow melt, not the occurrence of cool winters favoring accumulation, that was important for establishing the first major ice sheets on Antarctica. Although the pattern of Earth’s orbital configuration was the ultimate trigger for creating conditions that led to ice-sheet growth, a natural long-term decrease in atmospheric carbon dioxide levels, which promoted global cooling, was responsible for increasing Earth’s sensitivity to this factor.

In addition, analysis of the data indicates that along with the growth of the Antarctic ice sheet, glaciation in the Northern Hemisphere must also have been taking place.

Lisa Cugini | EurekAlert!
Further information:
http://www.gso.uri.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>