Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists study ocean to understand global cooling

07.01.2005


The depth in the ocean where calcium carbonate dissolves at a faster rate than it is deposited is called the calcite compensation depth (CCD). At present this depth is approximately 4,500 meters (14,700 feet) with some variation between and within ocean basins. Because the CCD is linked to ocean acidity, which is, in turn, linked to atmospheric carbon dioxide concentrations and, hence, to global climate, it is important for scientists to understand the impact of possible changes in its depth.

In the current issue of Nature, URI Graduate School of Oceanography (GSO) visiting scientist Helen Coxall describes how the deepening of the CCD in the Pacific Ocean correlated to global cooling approximately 34 million years ago, when the first significant permanent ice sheets appeared on Antarctica. Other members of the scientific team include Paul Wilson, Southampton Oceanography Center, UK, Heiko Pälike and Jan Backman, University of Stockholm, Sweden, and Caroline H. Lear, Rutgers University, New Jersey.

"This event 34 million years ago marks the transition from a warm ’greenhouse’ climate state, when atmospheric carbon dioxide levels were naturally high and there was no or very little ice at the poles, to the cold glaciated climate state of the modern world that was characterized by lower carbon dioxide," said Coxall. "It is therefore equivalent to global warming in reverse. The results of our study are crucial to the understanding of how climate change works, especially how rapidly major changes in ice-sheet growth and sea level rise and fall occur under altered conditions of atmospheric carbon dioxide."



Coxall and her colleagues analyzed sediment records and found that the deepening of the CCD was more rapid than previously documented and occurred in two jumps of about 40,000 years each, in step with the onset of Antarctic ice-sheet growth. The 40,000-year interval was separated by a plateau of 200,000 years.

The glaciation began after the Earth entered a cooler phase during an interval when the Earth’s orbit of the Sun favored cool summers. The researchers’ observations suggest that it was the prolonged absence of warm summers, inhibiting summer snow melt, not the occurrence of cool winters favoring accumulation, that was important for establishing the first major ice sheets on Antarctica. Although the pattern of Earth’s orbital configuration was the ultimate trigger for creating conditions that led to ice-sheet growth, a natural long-term decrease in atmospheric carbon dioxide levels, which promoted global cooling, was responsible for increasing Earth’s sensitivity to this factor.

In addition, analysis of the data indicates that along with the growth of the Antarctic ice sheet, glaciation in the Northern Hemisphere must also have been taking place.

Lisa Cugini | EurekAlert!
Further information:
http://www.gso.uri.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>