Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists study ocean to understand global cooling

07.01.2005


The depth in the ocean where calcium carbonate dissolves at a faster rate than it is deposited is called the calcite compensation depth (CCD). At present this depth is approximately 4,500 meters (14,700 feet) with some variation between and within ocean basins. Because the CCD is linked to ocean acidity, which is, in turn, linked to atmospheric carbon dioxide concentrations and, hence, to global climate, it is important for scientists to understand the impact of possible changes in its depth.

In the current issue of Nature, URI Graduate School of Oceanography (GSO) visiting scientist Helen Coxall describes how the deepening of the CCD in the Pacific Ocean correlated to global cooling approximately 34 million years ago, when the first significant permanent ice sheets appeared on Antarctica. Other members of the scientific team include Paul Wilson, Southampton Oceanography Center, UK, Heiko Pälike and Jan Backman, University of Stockholm, Sweden, and Caroline H. Lear, Rutgers University, New Jersey.

"This event 34 million years ago marks the transition from a warm ’greenhouse’ climate state, when atmospheric carbon dioxide levels were naturally high and there was no or very little ice at the poles, to the cold glaciated climate state of the modern world that was characterized by lower carbon dioxide," said Coxall. "It is therefore equivalent to global warming in reverse. The results of our study are crucial to the understanding of how climate change works, especially how rapidly major changes in ice-sheet growth and sea level rise and fall occur under altered conditions of atmospheric carbon dioxide."



Coxall and her colleagues analyzed sediment records and found that the deepening of the CCD was more rapid than previously documented and occurred in two jumps of about 40,000 years each, in step with the onset of Antarctic ice-sheet growth. The 40,000-year interval was separated by a plateau of 200,000 years.

The glaciation began after the Earth entered a cooler phase during an interval when the Earth’s orbit of the Sun favored cool summers. The researchers’ observations suggest that it was the prolonged absence of warm summers, inhibiting summer snow melt, not the occurrence of cool winters favoring accumulation, that was important for establishing the first major ice sheets on Antarctica. Although the pattern of Earth’s orbital configuration was the ultimate trigger for creating conditions that led to ice-sheet growth, a natural long-term decrease in atmospheric carbon dioxide levels, which promoted global cooling, was responsible for increasing Earth’s sensitivity to this factor.

In addition, analysis of the data indicates that along with the growth of the Antarctic ice sheet, glaciation in the Northern Hemisphere must also have been taking place.

Lisa Cugini | EurekAlert!
Further information:
http://www.gso.uri.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>