Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence for sun-climate reported by UMaine scientists

23.12.2004


A team led by University of Maine scientists has reported finding a potential link between changes in solar activity and the Earth’s climate. In a paper due to be published in an upcoming volume of the Annals of Glaciology, Paul Mayewski, director of UMaine’s Climate Change Institute, and 11 colleagues from China, Australia and UMaine describe evidence from ice cores pointing to an association between the waxing and waning of zonal wind strength around Antarctica and a chemical signal of changes in the sun’s output.



At the heart of the paper, Solar Forcing of the Polar Atmosphere, are calcium, nitrate and sodium data from ice cores collected in four Antarctic locations and comparisons of those data to South Pole ice core isotope data for beryllium-10, an indicator of solar activity. The authors also point to data from Greenland and the Canadian Yukon that suggest similar relationships between solar activity and the atmosphere in the northern hemisphere. They focus on years since 1400 when the Earth entered a roughly 500-year period known as the Little Ice Age.

The researchers’ goal is to understand what drives the Earth’s climate system without taking increases in greenhouse gases into account, says Mayewski. "There are good reasons to be concerned about greenhouse gases, but we should be looking at the climate system with our eyes open," he adds. Understanding how the system operates in the absence of human impacts is important for responding to climate changes that might occur in the future.


Mayewski founded the International Transantarctic Scientific Expedition (ITASE) and is the co-author of The Ice Chronicles: The Quest to Understand Global Climate Change, published in 2002 with Frank White. The United States’ ITASE office is located at UMaine. Antarctic locations used in the paper include: Law Dome, a 4,576-foot high ice mound located about 68 miles from the coast facing the Indian Ocean and the site of an Australian research station; Siple Dome, a 2,000-foot high ice covered mound located between two ice streams that flow out of the Transantarctic Mountains into the Ross ice shelf, and the site of a U.S. research station; and two ITASE field sites west of Siple Dome where ice cores were collected during field surveys in 2000 and 2001.

The authors are Mayewski, Kirk A. Maasch, Eric Meyerson, Sharon Sneed, Susan Kaspari, Daniel Dixon, and Erich Osterberg, all from UMaine; Yping Yan of the China Meterological Association; Shichang Kang of UMaine and the Chinese Academy of Sciences; and Vin Morgan, Tas van Ommen and Mark Curran of the Antarctic Climate and Ecosystems CRC in Tasmania.

Since at least the 1840s when sunspot cycles were discovered, scientists have proposed that solar variability could affect the climate, but direct evidence of that relationship and understanding of a mechanism have been lacking.

The ice core data show, the authors write, that when solar radiation increases, more calcium is deposited at Siple Dome and at one of the ITASE field sites. The additional calcium may reflect an increase in wind strength in mid-latitude regions around Antarctica, they add, especially over the Indian and Pacific Oceans. Calcium in West Antarctic ice cores is thought to derive mainly from dust in Australia, Africa and South America and from sea salt in the southern ocean.

That finding, they note, is consistent with other research suggesting that the sun may affect the strength of those mid-latitude winds through changes in stratospheric ozone over Antarctica.

The authors also refer to sodium data from Siple Dome ice cores that have been reported by Karl Kreutz, director of UMaine’s stable isotope laboratory. Changes in sodium appear to be associated with air pressure changes over the South Pacific.

Ice core data from Law Dome focus on changes in nitrate and may reflect changing wind patterns over Antarctica. The wind currents that bring nitrate to the continent, however, are less well known than those that carry sodium and calcium.

Researchers in the UMaine Climate Change Institute (http://www.climatechange.umaine.edu/) have focused on the relationship between solar variability and climate, particularly the use of isotopes in tree rings and ice cores to provide an indication of the sun’s strength. The ice core data reported in the paper demonstrates a direct atmospheric consequence associated with changing solar radiation.

Paul Mayewski | EurekAlert!
Further information:
http://www.climatechange.umaine.edu/
http://www.maine.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>