Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

50,000-year-old plant may warn of the death of tropical ice caps

16.12.2004


A simple stroll after a full day of field research near a high Andean glacier in Peru led glaciologist Lonnie Thompson to discover a bed of previously hidden plants that date back at least 50,000 years.



And while that discovery is novel enough to please any scientist, it’s the implication that those perfectly preserved plants may suggest that really excites him.

Thompson, a professor of geological sciences at Ohio State University and a world-class glaciologist, has made nearly annual pilgrimages to Peru’s Quelccaya ice cap to monitor its slow demise, a probably victim of recent global climate change. The glacier is retreating 40 times faster now than it was when the first aerial photographs were taken in 1963.


He told this story today as part of his Emiliani Lecture presentation at the annual meeting of the American Geophysical Union in San Francisco.

In 2002, he and his colleagues from the Byrd Polar Research Center had found a small bed of plants that had, until then, been buried by the ice cap. Carbon dating on those plants suggested that they had been buried nearly 5,000 years ago. “We were surprised by those dates and had the plant tissue dated four times by two separate institutions,” Thompson said, “but the dates remained the same.”

This time, Thompson decided to look up a different valley, some 1.8 miles (3 kilometers) from the initial plant find. “But about a quarter-mile from there, I found yet another area of uncovered plants.” When Thompson returned to his campus lab, he packaged the three new samples and sent them off for carbon-dating as well. The first two yielded dates similar to the 2002 plant find -- about 5,200 years ago.

But the date for the third plant sample seemed radically skewed. “We had the samples dated at the National AMS Facility at Woods Hole Oceanographic Institute (NOSAMS) and later sent other samples to the Lawrence Livermore National Laboratory (LLNL),” he explained. And when the dates on the third sample returned from both institutions, Thompson was shocked. “The tests showed that the samples of the third plant patch were greater than 48,000 years old, according to NOSAMS, and greater than 55,500 years old, according to LLNL – more than 10 times older than the earlier finds.”

But, Thompson pointed out that carbon-dating is unreliable for samples older than 50,000 years, so all he can accurately say at this point is that they are at least that old. He cautiously admits that they might be older but adds that there are no good methods to confirm that. “I want to stay conservative in my estimates as we continue to investigate this find,” he explains.

Blanca Leon, a researcher with the Plant Resources Center at the University of Texas at Austin, tentatively identified the plants as part of the genus Breutelia and they have similar modern descendents. There is a strong possibility that researchers can retrieve DNA from the samples.

Aside from the novelty of the find, Thompson is focusing on its potential implications: The plant had to have remained covered and protected for most of that time, which means that the ice cap most likely has not deteriorated to its current size for any length of time in more than 50,000 years.

That suggests that the global climate change he and others blame for the shrinkage also was less during that long period.

Tropical glaciers are major resources in the Andes for hydroelectric power production, crop irrigation, municipal water supplies and tourism. As these glaciers shrink, water supplies are reduced during the annual dry season and during future droughts, they will be seriously diminished, Thompson said. “The latest find is just one in a series pointing to the continued loss of mountain glaciers and hence the loss of the Earth’s ‘crown jewels,’” he said.

The National Science Foundation supported this work in part.

Lonnie Thompson | EurekAlert!
Further information:
http://www.osu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>