Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shutdown of circulation pattern could be disastrous

16.12.2004


If global warming shuts down the thermohaline circulation in the North Atlantic Ocean, the result could be catastrophic climate change. The environmental effects, models indicate, depend upon whether the shutdown is reversible or irreversible.

"If the thermohaline shutdown is irreversible, we would have to work much harder to get it to restart," said Michael Schlesinger, a professor of atmospheric sciences at the University of Illinois at Urbana-Champaign and a co-author of a report presented at the American Geophysical Union meeting in San Francisco. "Not only would we have the very difficult task of removing carbon dioxide from the atmosphere, we also would have the virtually impossible task of removing fresh water from the North Atlantic Ocean."

The thermohaline circulation is driven by differences in seawater density, caused by temperature and salinity. Like a great conveyor belt, the circulation pattern moves warm surface water from the southern hemisphere toward the North Pole. Between Greenland and Norway, the water cools, sinks into the deep ocean, and begins flowing back to the south.



"This movement carries a tremendous amount of heat northward, and plays a vital role in maintaining the current climate," Schlesinger said. "While shutting it down due to global warming would not cause an ice age, as was depicted in a recent blockbuster movie, ’The Day After Tomorrow,’ eastern North America and western Europe would nevertheless experience a shift in climate."

Paleoclimate records constructed from Greenland ice cores have revealed that the thermohaline circulation has, indeed, shut down in the past and caused regional climate change. As the vast ice sheet that covered much of North America during the last ice age finally receded, the meltwater flowed out the St. Lawrence and into the North Atlantic.

"The additional fresh water made the ocean surface less dense and it stopped sinking, effectively shutting down the thermohaline circulation," Schlesinger said. "As a result, Greenland cooled by about 7 degrees Celsius within several decades. When the meltwater stopped, the circulation pattern restarted, and Greenland warmed."

Since the system has previously shut down by itself, "it is not unlikely that it will do so again, especially with our help in pouring greenhouse gases into the atmosphere," Schlesinger said. "Higher temperatures due to global warming could add fresh water to the northern North Atlantic by increasing the precipitation and by melting nearby sea ice, mountain glaciers and the Greenland ice sheet. This influx of fresh water could reduce the surface salinity and density, leading to a shutdown of the thermohaline circulation.

Schlesinger and his team simulated the potential effects with an uncoupled ocean general circulation model and with it coupled to an atmosphere general circulation model. They found that the thermohaline circulation shut down irreversibly in the uncoupled model simulation, but reversibly in the coupled model simulation.

"The different results occurred because of a crucial feedback mechanism that appeared only in the coupled model simulation," Schlesinger said. "Enhanced evaporation increased the salinity and density of the ocean surface, offsetting the effects of additional fresh water."

"The irreversible shutdown of the thermohaline circulation thus appears to be an artifact of the model, rather than a likely outcome of global warming," Schlesinger said. "But, because the possibility of an irreversible shutdown cannot be excluded, suitable policy options should continue to be explored. Doing nothing to abate global warming would be foolhardy if the thermohaline circulation shutdown is irreversible."

Coauthors are U. of I. graduate student Jianjun Yin, research specialist Natasha Andronova, research programmer Bin Li, and Princeton University researcher Sergey Malyshev.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>