Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Shutdown of circulation pattern could be disastrous


If global warming shuts down the thermohaline circulation in the North Atlantic Ocean, the result could be catastrophic climate change. The environmental effects, models indicate, depend upon whether the shutdown is reversible or irreversible.

"If the thermohaline shutdown is irreversible, we would have to work much harder to get it to restart," said Michael Schlesinger, a professor of atmospheric sciences at the University of Illinois at Urbana-Champaign and a co-author of a report presented at the American Geophysical Union meeting in San Francisco. "Not only would we have the very difficult task of removing carbon dioxide from the atmosphere, we also would have the virtually impossible task of removing fresh water from the North Atlantic Ocean."

The thermohaline circulation is driven by differences in seawater density, caused by temperature and salinity. Like a great conveyor belt, the circulation pattern moves warm surface water from the southern hemisphere toward the North Pole. Between Greenland and Norway, the water cools, sinks into the deep ocean, and begins flowing back to the south.

"This movement carries a tremendous amount of heat northward, and plays a vital role in maintaining the current climate," Schlesinger said. "While shutting it down due to global warming would not cause an ice age, as was depicted in a recent blockbuster movie, ’The Day After Tomorrow,’ eastern North America and western Europe would nevertheless experience a shift in climate."

Paleoclimate records constructed from Greenland ice cores have revealed that the thermohaline circulation has, indeed, shut down in the past and caused regional climate change. As the vast ice sheet that covered much of North America during the last ice age finally receded, the meltwater flowed out the St. Lawrence and into the North Atlantic.

"The additional fresh water made the ocean surface less dense and it stopped sinking, effectively shutting down the thermohaline circulation," Schlesinger said. "As a result, Greenland cooled by about 7 degrees Celsius within several decades. When the meltwater stopped, the circulation pattern restarted, and Greenland warmed."

Since the system has previously shut down by itself, "it is not unlikely that it will do so again, especially with our help in pouring greenhouse gases into the atmosphere," Schlesinger said. "Higher temperatures due to global warming could add fresh water to the northern North Atlantic by increasing the precipitation and by melting nearby sea ice, mountain glaciers and the Greenland ice sheet. This influx of fresh water could reduce the surface salinity and density, leading to a shutdown of the thermohaline circulation.

Schlesinger and his team simulated the potential effects with an uncoupled ocean general circulation model and with it coupled to an atmosphere general circulation model. They found that the thermohaline circulation shut down irreversibly in the uncoupled model simulation, but reversibly in the coupled model simulation.

"The different results occurred because of a crucial feedback mechanism that appeared only in the coupled model simulation," Schlesinger said. "Enhanced evaporation increased the salinity and density of the ocean surface, offsetting the effects of additional fresh water."

"The irreversible shutdown of the thermohaline circulation thus appears to be an artifact of the model, rather than a likely outcome of global warming," Schlesinger said. "But, because the possibility of an irreversible shutdown cannot be excluded, suitable policy options should continue to be explored. Doing nothing to abate global warming would be foolhardy if the thermohaline circulation shutdown is irreversible."

Coauthors are U. of I. graduate student Jianjun Yin, research specialist Natasha Andronova, research programmer Bin Li, and Princeton University researcher Sergey Malyshev.

James E. Kloeppel | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>