Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shutdown of circulation pattern could be disastrous

16.12.2004


If global warming shuts down the thermohaline circulation in the North Atlantic Ocean, the result could be catastrophic climate change. The environmental effects, models indicate, depend upon whether the shutdown is reversible or irreversible.

"If the thermohaline shutdown is irreversible, we would have to work much harder to get it to restart," said Michael Schlesinger, a professor of atmospheric sciences at the University of Illinois at Urbana-Champaign and a co-author of a report presented at the American Geophysical Union meeting in San Francisco. "Not only would we have the very difficult task of removing carbon dioxide from the atmosphere, we also would have the virtually impossible task of removing fresh water from the North Atlantic Ocean."

The thermohaline circulation is driven by differences in seawater density, caused by temperature and salinity. Like a great conveyor belt, the circulation pattern moves warm surface water from the southern hemisphere toward the North Pole. Between Greenland and Norway, the water cools, sinks into the deep ocean, and begins flowing back to the south.



"This movement carries a tremendous amount of heat northward, and plays a vital role in maintaining the current climate," Schlesinger said. "While shutting it down due to global warming would not cause an ice age, as was depicted in a recent blockbuster movie, ’The Day After Tomorrow,’ eastern North America and western Europe would nevertheless experience a shift in climate."

Paleoclimate records constructed from Greenland ice cores have revealed that the thermohaline circulation has, indeed, shut down in the past and caused regional climate change. As the vast ice sheet that covered much of North America during the last ice age finally receded, the meltwater flowed out the St. Lawrence and into the North Atlantic.

"The additional fresh water made the ocean surface less dense and it stopped sinking, effectively shutting down the thermohaline circulation," Schlesinger said. "As a result, Greenland cooled by about 7 degrees Celsius within several decades. When the meltwater stopped, the circulation pattern restarted, and Greenland warmed."

Since the system has previously shut down by itself, "it is not unlikely that it will do so again, especially with our help in pouring greenhouse gases into the atmosphere," Schlesinger said. "Higher temperatures due to global warming could add fresh water to the northern North Atlantic by increasing the precipitation and by melting nearby sea ice, mountain glaciers and the Greenland ice sheet. This influx of fresh water could reduce the surface salinity and density, leading to a shutdown of the thermohaline circulation.

Schlesinger and his team simulated the potential effects with an uncoupled ocean general circulation model and with it coupled to an atmosphere general circulation model. They found that the thermohaline circulation shut down irreversibly in the uncoupled model simulation, but reversibly in the coupled model simulation.

"The different results occurred because of a crucial feedback mechanism that appeared only in the coupled model simulation," Schlesinger said. "Enhanced evaporation increased the salinity and density of the ocean surface, offsetting the effects of additional fresh water."

"The irreversible shutdown of the thermohaline circulation thus appears to be an artifact of the model, rather than a likely outcome of global warming," Schlesinger said. "But, because the possibility of an irreversible shutdown cannot be excluded, suitable policy options should continue to be explored. Doing nothing to abate global warming would be foolhardy if the thermohaline circulation shutdown is irreversible."

Coauthors are U. of I. graduate student Jianjun Yin, research specialist Natasha Andronova, research programmer Bin Li, and Princeton University researcher Sergey Malyshev.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>