Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Finds Trees and Insect Outbreaks Affect Carbon Dioxide Levels

16.12.2004


Winds and changing climate converted parts of Oklahoma, Kansas, Colorado and Texas into a giant ’dust bowl’ in the 1930s. In response, the 1937 ’Shelterbelt Project’ involved the planting of trees to reduce erosion and provide relief from the biting winds that blew soil from farms and drove people west to California. Now, almost 75 years later, NASA scientists have found that planting trees also can significantly reduce carbon dioxide in the atmosphere.

Tree planting and insect control could greatly affect Earth’s greenhouse gases – those gases in the atmosphere that warm the planet – according to NASA scientists who presented their findings this December during the American Geophysical Union’s fall meeting in San Francisco.

“Planting trees on marginal agricultural lands could ’sequester’ carbon and offset at least one-fifth of the annual fossil fuel emission of carbon in the United States,” said Christopher Potter, a scientist at NASA Ames Research Center in California’s Silicon Valley. “Scientists also have found that outbreaks of plant-eating insects may be linked with periodic droughts and heat waves in North America, which can trigger large seasonal losses of carbon dioxide back to the atmosphere.” Potter added.



NASA scientists report a satellite-driven computer model that predicts forest re-growth conservatively projects that 0.3 billion metric tons of carbon could be ’stored’ each year in trees growing on relatively low-production crop or rangeland areas in the United States.

The second study involves large-scale disturbances to greenhouse gases detected using global satellite data. "A historical picture is emerging of periodic droughts and heat waves, possibly coupled with herbivorous insect outbreaks, as among the most important causes of ecosystem disturbances in North America," Potter said.

According to scientists, the reason insects affect the planet’s carbon dioxide level is that the six-legged creatures eat and kill trees and other vegetation. When the amount of greenery is reduced on Earth, the remaining plants take in less carbon dioxide. As a result, say scientists, more of this gas remains in the air, instead of being trapped in wood, fiber, leaves and other foliage parts.

The findings about tree planting and insect control are the subjects of two technical papers, co-authored by Potter. Other co-authors of the paper related to tree planting, include Matthew Fladeland, also of NASA Ames, and Steven Klooster, Vanessa Genovese and Marc Kramer, all from California State University, Monterey Bay, Calif., all of whom are co-located at NASA Ames.

Potter’s co-authors for the second ’insect’ study include: Pang-Ning Tan, Michigan State University, East Lansing, Mich.; Vipin Kumar, University of Minnesota, Minneapolis; and Klooster.

John Bluck | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/environment/climate_bugs.html
http://www.nasa.gov

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>