Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Finds Trees and Insect Outbreaks Affect Carbon Dioxide Levels

16.12.2004


Winds and changing climate converted parts of Oklahoma, Kansas, Colorado and Texas into a giant ’dust bowl’ in the 1930s. In response, the 1937 ’Shelterbelt Project’ involved the planting of trees to reduce erosion and provide relief from the biting winds that blew soil from farms and drove people west to California. Now, almost 75 years later, NASA scientists have found that planting trees also can significantly reduce carbon dioxide in the atmosphere.

Tree planting and insect control could greatly affect Earth’s greenhouse gases – those gases in the atmosphere that warm the planet – according to NASA scientists who presented their findings this December during the American Geophysical Union’s fall meeting in San Francisco.

“Planting trees on marginal agricultural lands could ’sequester’ carbon and offset at least one-fifth of the annual fossil fuel emission of carbon in the United States,” said Christopher Potter, a scientist at NASA Ames Research Center in California’s Silicon Valley. “Scientists also have found that outbreaks of plant-eating insects may be linked with periodic droughts and heat waves in North America, which can trigger large seasonal losses of carbon dioxide back to the atmosphere.” Potter added.



NASA scientists report a satellite-driven computer model that predicts forest re-growth conservatively projects that 0.3 billion metric tons of carbon could be ’stored’ each year in trees growing on relatively low-production crop or rangeland areas in the United States.

The second study involves large-scale disturbances to greenhouse gases detected using global satellite data. "A historical picture is emerging of periodic droughts and heat waves, possibly coupled with herbivorous insect outbreaks, as among the most important causes of ecosystem disturbances in North America," Potter said.

According to scientists, the reason insects affect the planet’s carbon dioxide level is that the six-legged creatures eat and kill trees and other vegetation. When the amount of greenery is reduced on Earth, the remaining plants take in less carbon dioxide. As a result, say scientists, more of this gas remains in the air, instead of being trapped in wood, fiber, leaves and other foliage parts.

The findings about tree planting and insect control are the subjects of two technical papers, co-authored by Potter. Other co-authors of the paper related to tree planting, include Matthew Fladeland, also of NASA Ames, and Steven Klooster, Vanessa Genovese and Marc Kramer, all from California State University, Monterey Bay, Calif., all of whom are co-located at NASA Ames.

Potter’s co-authors for the second ’insect’ study include: Pang-Ning Tan, Michigan State University, East Lansing, Mich.; Vipin Kumar, University of Minnesota, Minneapolis; and Klooster.

John Bluck | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/environment/climate_bugs.html
http://www.nasa.gov

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>