Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Method removes MTBE from water

14.12.2004


A new technique by a WUSTL environmental engineer addresses the toxicity of the gas additive MTBE.


A researcher has discovered an effective way to remove a troubling new pollutant from our nation’s water sources.

Pratim Biswas, The Stifel and Quinette Jens Professor of Environmental Engineering Science and director of the Environmental Engineering Science Program at Washington University in St. Louis, has found a method for removing the toxin MTBE from water. MTBE (methyl tertiary butyl ether) has been detected at low levels in municipal water sources around the nation and in several cases has made its way into citizens’ tap water.

Biswas discovered that a nanostructured form of a compound called titanium dioxide causes MTBE to react with dissolved oxygen so that it yields the harmless gas carbon dioxide. This reaction proceeds via oxidation of MTBE on the surface of the titanium dioxide to produce a harmful end product. Biswas then designed nanostructure configurations of this catalyst to optimally degrade the pollutant.



"These photo-catalysts can be powered by an artificial light source or can be designed to run on solar power," said Biswas. Biswas presented his research at the American Chemical Society’s annual meeting, held Aug. 23-25 in Philadelphia.

One of the researcher’s innovations was developing a special micro-lamp (corona) that emits a glow after a current is run through it. But that’s not all: This system also can be tailored to produce ozone, which speeds up the oxidation of MTBE to carbon dioxide.

Biswas felt it was important to find a way to remove this pollutant because "[It] is a toxin and has been implicated as a carcinogen (cancer-causing agent)," he said.

Even more immediately obvious, the chemical’s presence in water produces an offensive taste and a slight odor.

Problem of tank leakage

MTBE has been used in American fuels since 1979 -- even more so in recent years in California -- as an alternative to octane-enhancing lead additives because it helps fuel to be completely combusted. Thus, MTBE decreases the environmentally harmful byproducts of incomplete burning without containing the toxic element lead.

The one drawback is that MTBE can be harmful to human health, too, through exposure via groundwater sources. "One doesn’t know why, but underground gas tanks consistently leak, and this problem should really be taken care of," said Biswas.

Unfortunately, when gasoline leaks out, the MTBE is very soluble in water, and even localized leaks can allow MTBE to spread widely in a relatively short amount of time.

Biswas set out to design a compact unit for MTBE removal — and he succeeded. The original device was only 18 by six inches and held three to four gallons of water. The reactor removed all of the MTBE within a couple hours. Companies such as Salt Lake City-based Ceramatec have collaborated with him on scaling up the purifying unit, a process that he anticipates to be rather straightforward.
Biswas is optimistic that his technology can be used around the country to removed MTBE from water. MTBE levels in gasoline started to increase after the Clean Air Act of 1990, which mandated lower levels of harmful emissions in car exhaust. MTBE seemed like the perfect alternative, and it wasn’t until high levels were detected in a Santa Monica well in California in 1996 that people began to take notice of the pollutant.

The U.S. Environmental Protection Agency (EPA) has said that levels of the pollutant below 20 to 40 parts per billion (ppb) are considered non-toxic, but water with considerably lower levels of the toxin can be foul tasting.

Biswas discovered that titanium dioxide catalyzes the oxidation of MTBE , as a follow up on his work related to removing pollutants like mercury from coal combustion exhausts. He said that titanium dioxide is proving to be an exciting compound because it also oxidizes dirt and scum, and is already the active constituent in products like self-cleaning bathroom tiles. He calls it a "wonder chemical" with a variety of applications in environmental technologies.

Nanoparticles are also an active area of research, and Biswas is excited to be working in this field. These particles have many potentially beneficial applications, for example, drug delivery via aerosol spray, and production of novel materials -- work that is being conducted through the auspices of the Washington University Center for Materials Innovation.

There is some concern about the health risks of these nanoparticles.

"One needs to address the problem at the beginning, rather than discover the problems years later," said Biswas. "Our take is that [nanoparticles] could be made safe. They can be engineered to be safe. But it is important to be careful from the start, and we are doing so."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time

29.06.2017 | Automotive Engineering

Turning the Climate Tide by 2020

29.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>