Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Method removes MTBE from water

14.12.2004


A new technique by a WUSTL environmental engineer addresses the toxicity of the gas additive MTBE.


A researcher has discovered an effective way to remove a troubling new pollutant from our nation’s water sources.

Pratim Biswas, The Stifel and Quinette Jens Professor of Environmental Engineering Science and director of the Environmental Engineering Science Program at Washington University in St. Louis, has found a method for removing the toxin MTBE from water. MTBE (methyl tertiary butyl ether) has been detected at low levels in municipal water sources around the nation and in several cases has made its way into citizens’ tap water.

Biswas discovered that a nanostructured form of a compound called titanium dioxide causes MTBE to react with dissolved oxygen so that it yields the harmless gas carbon dioxide. This reaction proceeds via oxidation of MTBE on the surface of the titanium dioxide to produce a harmful end product. Biswas then designed nanostructure configurations of this catalyst to optimally degrade the pollutant.



"These photo-catalysts can be powered by an artificial light source or can be designed to run on solar power," said Biswas. Biswas presented his research at the American Chemical Society’s annual meeting, held Aug. 23-25 in Philadelphia.

One of the researcher’s innovations was developing a special micro-lamp (corona) that emits a glow after a current is run through it. But that’s not all: This system also can be tailored to produce ozone, which speeds up the oxidation of MTBE to carbon dioxide.

Biswas felt it was important to find a way to remove this pollutant because "[It] is a toxin and has been implicated as a carcinogen (cancer-causing agent)," he said.

Even more immediately obvious, the chemical’s presence in water produces an offensive taste and a slight odor.

Problem of tank leakage

MTBE has been used in American fuels since 1979 -- even more so in recent years in California -- as an alternative to octane-enhancing lead additives because it helps fuel to be completely combusted. Thus, MTBE decreases the environmentally harmful byproducts of incomplete burning without containing the toxic element lead.

The one drawback is that MTBE can be harmful to human health, too, through exposure via groundwater sources. "One doesn’t know why, but underground gas tanks consistently leak, and this problem should really be taken care of," said Biswas.

Unfortunately, when gasoline leaks out, the MTBE is very soluble in water, and even localized leaks can allow MTBE to spread widely in a relatively short amount of time.

Biswas set out to design a compact unit for MTBE removal — and he succeeded. The original device was only 18 by six inches and held three to four gallons of water. The reactor removed all of the MTBE within a couple hours. Companies such as Salt Lake City-based Ceramatec have collaborated with him on scaling up the purifying unit, a process that he anticipates to be rather straightforward.
Biswas is optimistic that his technology can be used around the country to removed MTBE from water. MTBE levels in gasoline started to increase after the Clean Air Act of 1990, which mandated lower levels of harmful emissions in car exhaust. MTBE seemed like the perfect alternative, and it wasn’t until high levels were detected in a Santa Monica well in California in 1996 that people began to take notice of the pollutant.

The U.S. Environmental Protection Agency (EPA) has said that levels of the pollutant below 20 to 40 parts per billion (ppb) are considered non-toxic, but water with considerably lower levels of the toxin can be foul tasting.

Biswas discovered that titanium dioxide catalyzes the oxidation of MTBE , as a follow up on his work related to removing pollutants like mercury from coal combustion exhausts. He said that titanium dioxide is proving to be an exciting compound because it also oxidizes dirt and scum, and is already the active constituent in products like self-cleaning bathroom tiles. He calls it a "wonder chemical" with a variety of applications in environmental technologies.

Nanoparticles are also an active area of research, and Biswas is excited to be working in this field. These particles have many potentially beneficial applications, for example, drug delivery via aerosol spray, and production of novel materials -- work that is being conducted through the auspices of the Washington University Center for Materials Innovation.

There is some concern about the health risks of these nanoparticles.

"One needs to address the problem at the beginning, rather than discover the problems years later," said Biswas. "Our take is that [nanoparticles] could be made safe. They can be engineered to be safe. But it is important to be careful from the start, and we are doing so."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>