Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon Sink or Carbon Source? Aerosols Play Significant Role in Shifts

09.12.2004


Researchers at North Carolina State University have shown that the amount of aerosols – dust particles, soot from automobile emissions and factories, and other airborne particles – in the atmosphere has a significant impact on whether the surface area below either absorbs or emits more carbon dioxide (CO2).



The researchers discovered that changes in the levels of airborne aerosols resulted in changes to the terrestrial carbon cycle, or the cycle in which CO2 is absorbed by plant photosynthesis and then emitted by the soil.

Besides documenting the effects of aerosols on the carbon cycle, the research also showed that the type of landscape also influenced whether a surface area served as a carbon sink, an area that absorbs more CO2 than it emits, or as a carbon source, an area that emits more CO2 than it absorbs. In the research project, six locations across the United States – encompassing forests, croplands and grasslands – were studied. Increased amounts of aerosols over forests and croplands resulted in surface areas below becoming carbon sinks, but increased amounts of aerosols over grasslands resulted in surface areas becoming carbon sources.


Dr. Dev Niyogi, research assistant professor of marine, earth and atmospheric sciences at NC State and lead author of the study, hypothesizes that the differences among landscapes can be attributed to the amount of shade provided by tree and plant leaves in forests and croplands. The lack of shading in grasslands changes the ground surface temperature, which alters the rate of photosynthesis in plants and the CO2 emissions by soil. Since plants want to take in CO2 but also preserve water at the same time, Niyogi believes the lack of shade and increased temperatures may cause plants to slow the rate of photosynthesis, causing less CO2 to be absorbed and thus more CO2 to be effectively emitted. That would make the surface area a carbon source.

The research was published in Geophysical Research Letters, a journal of the American Geophysical Union. Niyogi’s co-authors on the research paper include NC State graduate student Hsin-I Chang; Dr. Vinod Saxena, professor of marine, earth and atmospheric sciences at NC State; Dr. Randy Wells, professor of crop science at NC State; Dr. Fitzgerald Booker, associate professor of crop science at NC State and USDA-ARS plant physiologist; Dr. Teddy Holt, adjunct professor of marine, earth and atmospheric sciences at NC State and a scientist at Naval Research Laboratory-Monterey; and colleagues from across the country.

Aerosols have been known to affect the climate by changing the radiation that reaches the earth surface. Increase in aerosols is often considered one possible reason that the earth’s surface has not seen as much warming as previously projected by climate models.

Previous studies have shown that many factors affect the carbon cycle, including rainfall and changes in land cover. But this study is believed to be the first multisite, observational analysis demonstrating that aerosols affect the carbon cycle. The study shows aerosols affect the earth’s regional climate in an even more profound manner by affecting its biological and chemical exchanges of the greenhouse gases.

The study examined six sites across the United States in the summertime; these locations were chosen because data on aerosols and carbon fluxes, or the changes in the carbon absorption and emission rates, were readily available. Sites ranged from grassland in Alaska to mixed forestland in Wisconsin to cropland in Oklahoma.

Before showing the effects of aerosols on the carbon cycle, the paper first showed the effects of diffuse radiation – radiation that is not direct sunlight but radiation scattered by clouds, haze, or something else – on carbon fluxes. The research showed that higher levels of diffuse radiation resulted in higher rates of carbon sink.

Although common sense would suggest that areas with plants receiving more constant direct sunlight would result in a surface becoming a carbon sink, that is not necessarily the case, Niyogi says. In fact, more radiation means plants more quickly reach a level of photosaturation. As Niyogi explains it, “Plants absorb CO2 very efficiently. At very high levels of radiation, as is the case with direct radiation, additional increases do not necessarily cause increased photosynthesis. It doesn’t matter how much more radiation you add, the plant is not going to absorb more CO2. But at lower levels of radiation, as is the case with diffuse radiation, any increase in radiation translates to additional photosynthesis.”

The study then examined the effects of cloudiness on the carbon cycle. Cloudiness, which increased the amount of diffuse radiation, resulted in a greater amount of carbon sink in surface areas.

The study team then linked aerosols and diffuse radiation, and showed strong relationships between high amounts of aerosols and high amounts of diffuse radiation and between low amounts of aerosols and low amounts of diffuse radiation.

Finally, the study yielded its most important findings: Aerosols affect the carbon cycle in different types of landscapes, with forests and croplands serving as carbon sinks while grasslands served as carbon sources.

“When you have more carbon being absorbed, it means that plants and forests there are going to grow faster,” Niyogi said. “And so it has the potential to alter the landscape. And when you have a change in landscape, or a change in the biogeochemical properties – like the carbon cycle – you have a landscape that is actively vulnerable to climate change.

“Studies like these can really start putting forward the right processes in trying to quantify the carbon sink more accurately. Once we start introducing these reality-based processes into our models, we’ll get better estimates” of carbon budget, Niyogi said.

Niyogi now plans to add other variables to studying the carbon cycle, such as the effects of different types of aerosols, and factors like soil moisture. He is also planning regional and global analyses – using satellite remote sensing and models – to see if results square with the field studies.

The research was funded by NASA, the National Science Foundation, the Office of Naval Research, and an NC State Faculty Research and Professional Development Award.

Dr. Dev Niyogi | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>